This paper is concerned with the 1D fluid-particle interaction model in the so-called bubbling regime which describes the evolution of particles dispersed in a viscous compressible fluid. The model under investigation is described by the conservation of fluid mass, the balance of momentum and the balance of particle density. We obtained the global existence and uniqueness of the classical large solution to this model with the initial fluid density ρ0 admitting vacuum.
REFERENCES
1.
Berres
, S.
, Bürger
, R.
, Karlsen
, K. H.
, and Tory
, E. M.
, “Strongly degenerate parabolic-hyperbolic systems modeling polydisperse sedimentation with compression
,” SIAM J. Appl. Math.
64
(1
), 41
–80
(2003
).2.
Caflisch
, R.
and Papanicolaou
, G.
, “Dynamic theory of suspensions with Brownian effects
,” SIAM J. Appl. Math.
43
, 885
–906
(1983
).3.
Carrillo
, J. A.
and Goudon
, T.
, “Stability and asymptotic analysis of a fluid-particle interaction model
,” Commun. Partial Differ. Equ.
31
, 1349
–1379
(2006
).4.
Carrillo
, J. A.
, Karper
, T.
, and Trivisa
, K.
, “On the dynamics of a fluid-particle model: the bubbling regime
,” Nonlinear Anal.: Real World Appl.
74
(8
), 2778
–2801
(2011
).5.
Cho
, Y.
and Kim
, H.
, “On classical solutions of the compressible Navier-Stokes equations with non-negative initial densities
,” Manuscr. Math.
120
, 91
–129
(2006
).6.
Cho
, Y.
and Kim
, H.
, “Existence results for viscous polytropic fluids with vacuum
,” J. Differ. Equations
228
, 377
–411
(2006
).7.
Clouet
, J. F.
and Domelevo
, K.
, “Solutions of a kinetic stochastic equation modeling a spray in a turbulent gas flow
,” Math. Models Meth. Appl. Sci.
7
, 239
–263
(1997
).8.
Ding
, S. J.
, Wen
, H. Y.
, and Zhu
, C. J.
, “Global classical large solutions to 1D compressible Navier-Stokes equations with density-dependent viscosity and vacuum
,” J. Differ. Equations
251
, 1696
–1725
(2011
).9.
Ding
, S. J.
, Wen
, H. Y.
, Yao
, L.
, and Zhu
, C. J.
, “Global spherically symmetric classical solution to compressible Navier-Stokes equations with large initial data and vacuum
,” SIAM J. Appl. Math. (in press).10.
Evans
, L. C.
, Partial Differential Equations, Graduate Studies in Mathematics
(American Mathematical Society
, Providence, RI
, 1998
), Vol. 19
.11.
Feireisl
, E.
, Novotný
, A.
, and Petzeltová
, H.
, “On the existence of globally defined weak solutions to the Navier-Stokes equations of compressible isentropic fluids
,” J. Math. Fluid Dyn.
3
, 358
–392
(2001
).12.
Feireisl
, E.
and Petzeltová
, H.
, “Large-time behavior of solutions to the Navier-Stokes equations of compressible flow
,” Arch. Ration. Mech. Anal.
150
, 77
–96
(1999
).13.
Goudon
, T.
, Jabin
, P. E.
, and Vasseur
, A.
, “Hydrodynamic limit for the Vlasov-Navier-Stokes equations. I. Light particles regime
,” Indiana Univ. Math. J.
53
(6
), 1495
–1515
(2004
).14.
Goudon
, T.
, Jabin
, P. E.
, and Vasseur
, A.
, “Hydrodynamic limit for the Vlasov-Navier-Stokes equations. II. Fine particles regime
,” Indiana Univ. Math. J.
53
(6
), 1517
–1536
(2004
).15.
Hamdache
, K.
, “Global existence and large time behavior of solutions for the Vlasov-Stokes equations
,” Jpn J. Ind. Appl. Math.
15
, 51
–74
(1998
).16.
Huang
, X. D.
, Li
, J.
, and Xin
, Z. P.
, “Global well-posedness of classical solutions with large oscillations and vacuum to the three-dimensional isentropic compressible Navier-Stokes equations
,” Commun. Pure Appl. Math.
65
, 0549
–0585
(2012
).17.
Jabin
, P. E.
and Perthame
, B.
, “Notes on mathematical problems on the dynamics of dispersed particles interacting through a fluid
,” Modeling in applied sciences, 111–147, Model. Simul. Sci. Eng. Technol.
, Birkhäuser Boston
, Boston, MA
, 2000
.18.
Lions
, P. L.
, Mathematical topics in fluid dynamics
, Vol. 2
, Compressible models (Oxford University Press
, Oxford
, 1998
).19.
Mellet
, A.
and Vasseur
, A.
, “Global weak solutions for a Vlasov-Fokker-Planck/Navier-Stokes system of equations
,” Math. Models Meth. Appl. Sci.
17
(7
), 1039
–1063
(2007
).20.
Mellet
, A.
and Vasseur
, A.
, “Asymptotic analysis for a Vlasov-Fokker- Planck/compressible Navier-Stokes system of equations
,” Commun. Math. Phys.
281
, 573
–596
(2008
).21.
Novotný
, A.
and Straškraba
, I.
, Introduction to the Mathematical Theory of Compressible Flow
(Oxford University Press
, Oxford
, 2004
).22.
Russo
, G.
and Smereka
, P.
, “Kinetic theory for bubbly flows I, II
,” SIAM J. Appl. Math.
56
, 327
–371
(1996
).23.
Sartory
, W. K.
, “Three-component analysis of blood sedimentation by the method of characteristics
,” Math. Biosci.
33
, 145
–165
(1977
).24.
Spannenberg
, A.
and Galvin
, K. P.
, “Continuous differential sedimentation of a binary suspension
,” Chem. Eng. Aust.
21
, 7
–11
(1996
).25.
Teshukov
, V. M.
and Gavrilyuk
, S. L.
, “Kinetic model for the motion of compressible bubbles in a perfect fluid
,” Eur. J. Mech. B Fluids
21
, 469
–491
(2002
).26.
Wen
, H. Y.
and Zhu
, C. J.
, “Global classical large solutions to Navier-Stokes equations for viscous compressible and heat conducting fluids with vacuum
,” e-print arXiv:1103.1421v1 [math.AP].27.
28.
Williams
, F. A.
, “Spray combustion and atomization
,” Phys. Fluids
1
, 541
–555
(1958
).29.
Zlotnik
, A. A.
, “Uniform estimates and stabilization of symmetric solutions of a system of quasilinear equations
,” Diff. Eq.
, 36
(5
), 701
–716
(2000
).© 2012 American Institute of Physics.
2012
American Institute of Physics
You do not currently have access to this content.