This paper is concerned with the 1D fluid-particle interaction model in the so-called bubbling regime which describes the evolution of particles dispersed in a viscous compressible fluid. The model under investigation is described by the conservation of fluid mass, the balance of momentum and the balance of particle density. We obtained the global existence and uniqueness of the classical large solution to this model with the initial fluid density ρ0 admitting vacuum.

1.
Berres
,
S.
,
Bürger
,
R.
,
Karlsen
,
K. H.
, and
Tory
,
E. M.
, “
Strongly degenerate parabolic-hyperbolic systems modeling polydisperse sedimentation with compression
,”
SIAM J. Appl. Math.
64
(
1
),
41
80
(
2003
).
2.
Caflisch
,
R.
and
Papanicolaou
,
G.
, “
Dynamic theory of suspensions with Brownian effects
,”
SIAM J. Appl. Math.
43
,
885
906
(
1983
).
3.
Carrillo
,
J. A.
and
Goudon
,
T.
, “
Stability and asymptotic analysis of a fluid-particle interaction model
,”
Commun. Partial Differ. Equ.
31
,
1349
1379
(
2006
).
4.
Carrillo
,
J. A.
,
Karper
,
T.
, and
Trivisa
,
K.
, “
On the dynamics of a fluid-particle model: the bubbling regime
,”
Nonlinear Anal.: Real World Appl.
74
(
8
),
2778
2801
(
2011
).
5.
Cho
,
Y.
and
Kim
,
H.
, “
On classical solutions of the compressible Navier-Stokes equations with non-negative initial densities
,”
Manuscr. Math.
120
,
91
129
(
2006
).
6.
Cho
,
Y.
and
Kim
,
H.
, “
Existence results for viscous polytropic fluids with vacuum
,”
J. Differ. Equations
228
,
377
411
(
2006
).
7.
Clouet
,
J. F.
and
Domelevo
,
K.
, “
Solutions of a kinetic stochastic equation modeling a spray in a turbulent gas flow
,”
Math. Models Meth. Appl. Sci.
7
,
239
263
(
1997
).
8.
Ding
,
S. J.
,
Wen
,
H. Y.
, and
Zhu
,
C. J.
, “
Global classical large solutions to 1D compressible Navier-Stokes equations with density-dependent viscosity and vacuum
,”
J. Differ. Equations
251
,
1696
1725
(
2011
).
9.
Ding
,
S. J.
,
Wen
,
H. Y.
,
Yao
,
L.
, and
Zhu
,
C. J.
, “
Global spherically symmetric classical solution to compressible Navier-Stokes equations with large initial data and vacuum
,” SIAM J. Appl. Math. (in press).
10.
Evans
,
L. C.
,
Partial Differential Equations, Graduate Studies in Mathematics
(
American Mathematical Society
,
Providence, RI
,
1998
), Vol.
19
.
11.
Feireisl
,
E.
,
Novotný
,
A.
, and
Petzeltová
,
H.
, “
On the existence of globally defined weak solutions to the Navier-Stokes equations of compressible isentropic fluids
,”
J. Math. Fluid Dyn.
3
,
358
392
(
2001
).
12.
Feireisl
,
E.
and
Petzeltová
,
H.
, “
Large-time behavior of solutions to the Navier-Stokes equations of compressible flow
,”
Arch. Ration. Mech. Anal.
150
,
77
96
(
1999
).
13.
Goudon
,
T.
,
Jabin
,
P. E.
, and
Vasseur
,
A.
, “
Hydrodynamic limit for the Vlasov-Navier-Stokes equations. I. Light particles regime
,”
Indiana Univ. Math. J.
53
(
6
),
1495
1515
(
2004
).
14.
Goudon
,
T.
,
Jabin
,
P. E.
, and
Vasseur
,
A.
, “
Hydrodynamic limit for the Vlasov-Navier-Stokes equations. II. Fine particles regime
,”
Indiana Univ. Math. J.
53
(
6
),
1517
1536
(
2004
).
15.
Hamdache
,
K.
, “
Global existence and large time behavior of solutions for the Vlasov-Stokes equations
,”
Jpn J. Ind. Appl. Math.
15
,
51
74
(
1998
).
16.
Huang
,
X. D.
,
Li
,
J.
, and
Xin
,
Z. P.
, “
Global well-posedness of classical solutions with large oscillations and vacuum to the three-dimensional isentropic compressible Navier-Stokes equations
,”
Commun. Pure Appl. Math.
65
,
0549
0585
(
2012
).
17.
Jabin
,
P. E.
and
Perthame
,
B.
, “
Notes on mathematical problems on the dynamics of dispersed particles interacting through a fluid
,”
Modeling in applied sciences, 111–147, Model. Simul. Sci. Eng. Technol.
,
Birkhäuser Boston
,
Boston, MA
,
2000
.
18.
Lions
,
P. L.
,
Mathematical topics in fluid dynamics
, Vol.
2
, Compressible models (
Oxford University Press
,
Oxford
,
1998
).
19.
Mellet
,
A.
and
Vasseur
,
A.
, “
Global weak solutions for a Vlasov-Fokker-Planck/Navier-Stokes system of equations
,”
Math. Models Meth. Appl. Sci.
17
(
7
),
1039
1063
(
2007
).
20.
Mellet
,
A.
and
Vasseur
,
A.
, “
Asymptotic analysis for a Vlasov-Fokker- Planck/compressible Navier-Stokes system of equations
,”
Commun. Math. Phys.
281
,
573
596
(
2008
).
21.
Novotný
,
A.
and
Straškraba
,
I.
,
Introduction to the Mathematical Theory of Compressible Flow
(
Oxford University Press
,
Oxford
,
2004
).
22.
Russo
,
G.
and
Smereka
,
P.
, “
Kinetic theory for bubbly flows I, II
,”
SIAM J. Appl. Math.
56
,
327
371
(
1996
).
23.
Sartory
,
W. K.
, “
Three-component analysis of blood sedimentation by the method of characteristics
,”
Math. Biosci.
33
,
145
165
(
1977
).
24.
Spannenberg
,
A.
and
Galvin
,
K. P.
, “
Continuous differential sedimentation of a binary suspension
,”
Chem. Eng. Aust.
21
,
7
11
(
1996
).
25.
Teshukov
,
V. M.
and
Gavrilyuk
,
S. L.
, “
Kinetic model for the motion of compressible bubbles in a perfect fluid
,”
Eur. J. Mech. B Fluids
21
,
469
491
(
2002
).
26.
Wen
,
H. Y.
and
Zhu
,
C. J.
, “
Global classical large solutions to Navier-Stokes equations for viscous compressible and heat conducting fluids with vacuum
,” e-print arXiv:1103.1421v1 [math.AP].
27.
Williams
,
F. A.
,
Combustion Theory
, 2nd ed. (
Benjamin
,
1985
).
28.
Williams
,
F. A.
, “
Spray combustion and atomization
,”
Phys. Fluids
1
,
541
555
(
1958
).
29.
Zlotnik
,
A. A.
, “
Uniform estimates and stabilization of symmetric solutions of a system of quasilinear equations
,”
Diff. Eq.
,
36
(
5
),
701
716
(
2000
).
You do not currently have access to this content.