A marginally trapped surface in the four-dimensional Minkowski space is a spacelike surface whose mean curvature vector is lightlike at each point. We associate a geometrically determined moving frame field to such a surface and using the derivative formulas for this frame field we obtain seven invariant functions. Our main theorem states that these seven invariants determine the surface up to a motion in Minkowski space. We introduce meridian surfaces as one-parameter systems of meridians of a rotational hypersurface in the four-dimensional Minkowski space. We find all marginally trapped meridian surfaces.
REFERENCES
1.
Burstin
, C.
and Mayer
, W.
, “Über affine Geometrie XLI: Die Geometrie zweifach ausgedehnter Mannigfaltigkeiten F2 im affinen R4
,” M. Z.
26
, 373
–407
(1927
).2.
3.
Chen
, B.-Y.
, Pseudo-Riemannian Geometry, δ-Invariants and Applications
(World Scientific
, 2011
).4.
Chen
, B.-Y.
and Van der Veken
, J.
, “Marginally trapped surfaces in Lorenzian space with positive relative nullity
,” Class. Quantum Grav.
24
, 551
–563
(2007
).5.
Chen
, B.-Y.
and Van der Veken
, J.
, “Spacial and Lorenzian surfaces in Robertson-Walker space-times
,” J. Math. Phys.
48
, 073509
(2007
).6.
Chen
, B.-Y.
and Van der Veken
, J.
, “Classification of marginally trapped surfaces with parallel mean curvature vector in Lorenzian space forms
,” Houston J. Math.
36
(2), 421
–449
(2010
).7.
Ganchev
, G.
and Milousheva
, V.
, “Invariants and Bonnet-type theorem for surfaces in
,” ${\mathbb R}^4$
Cent. Eur. J. Math.
8
(6
), 993
–1008
(2010
).8.
Ganchev
, G.
and Milousheva
, V.
, “An invariant theory of spacelike surfaces in the four-dimensional Minkowski space
,” Mediterr. J. Math.
(to be published).9.
Gheysens
, L.
, Verheyen
, P.
, and Verstraelen
, L.
, “Sur les surfaces
,” $\mathcal {A}$
ou les surfaces de ChenC. R. Math. Acad. Sci. Paris, Sér. I
292
, 913
–916
(1981
).10.
Gheysens
, L.
,Verheyen
, P.
, andVerstraelen
, L.
, “Characterization and examples of Chen submanifolds
,” J. Geom.
20
, 47
–62
(1983
).11.
Haesen
, S.
and Ortega
, M.
, “Boost invariant marginally trapped surfaces in Minkowski 4-space
,” Class. Quantum Grav.
24
, 5441
–5452
(2007
).12.
Haesen
, S.
and Ortega
, M.
, “Marginally trapped surfaces in Minkowksi 4-space invariant under a rotational subgroup of the Lorenz group
,” Gen. Relativ. Grav.
41
, 1819
–1834
(2009
).13.
Haesen
, S.
and Ortega
, M.
, “Screw invariant marginally trapped surfaces in Minkowski 4-space
,” J. Math. Anal. Appl.
355
, 639
–648
(2009
).14.
Lane
, E.
, Projective Differential Geometry of Curves and Surfaces
(University of Chicago
, Chicago
, 1932
).15.
Little
, J.
, “On singularities of submanifolds of higher dimensional Euclidean spaces
,” Ann. Mat. Pura Appl. IV Ser.
83
, 261
–335
(1969
).16.
Penrose
, R.
“Gravitational collapse and space-time singularities
,” Phys. Rev. Lett.
14
, 57
–59
(1965
).17.
Walter
R.
, “Über zweidimensionale parabolische Flächen im vierdimensionalen affinen Raum. I: Allgemeine Flächentheorie
,” J. Reine Angew. Math.
227
, 178
–208
(1967
).© 2012 American Institute of Physics.
2012
American Institute of Physics
You do not currently have access to this content.