A marginally trapped surface in the four-dimensional Minkowski space is a spacelike surface whose mean curvature vector is lightlike at each point. We associate a geometrically determined moving frame field to such a surface and using the derivative formulas for this frame field we obtain seven invariant functions. Our main theorem states that these seven invariants determine the surface up to a motion in Minkowski space. We introduce meridian surfaces as one-parameter systems of meridians of a rotational hypersurface in the four-dimensional Minkowski space. We find all marginally trapped meridian surfaces.

1.
Burstin
,
C.
and
Mayer
,
W.
, “
Über affine Geometrie XLI: Die Geometrie zweifach ausgedehnter Mannigfaltigkeiten F2 im affinen R4
,”
M. Z.
26
,
373
407
(
1927
).
2.
Chen
,
B.-Y.
,
Geometry of Submanifolds
(
Marcel Dekker
,
New York
,
1973
).
3.
Chen
,
B.-Y.
,
Pseudo-Riemannian Geometry, δ-Invariants and Applications
(
World Scientific
,
2011
).
4.
Chen
,
B.-Y.
and
Van der Veken
,
J.
, “
Marginally trapped surfaces in Lorenzian space with positive relative nullity
,”
Class. Quantum Grav.
24
,
551
563
(
2007
).
5.
Chen
,
B.-Y.
and
Van der Veken
,
J.
, “
Spacial and Lorenzian surfaces in Robertson-Walker space-times
,”
J. Math. Phys.
48
,
073509
(
2007
).
6.
Chen
,
B.-Y.
and
Van der Veken
,
J.
, “
Classification of marginally trapped surfaces with parallel mean curvature vector in Lorenzian space forms
,”
Houston J. Math.
36
(2),
421
449
(
2010
).
7.
Ganchev
,
G.
and
Milousheva
,
V.
, “
Invariants and Bonnet-type theorem for surfaces in
${\mathbb R}^4$
R4
,”
Cent. Eur. J. Math.
8
(
6
),
993
1008
(
2010
).
8.
Ganchev
,
G.
and
Milousheva
,
V.
, “
An invariant theory of spacelike surfaces in the four-dimensional Minkowski space
,”
Mediterr. J. Math.
(to be published).
9.
Gheysens
,
L.
,
Verheyen
,
P.
, and
Verstraelen
,
L.
, “
Sur les surfaces
$\mathcal {A}$
A
ou les surfaces de Chen
,”
C. R. Math. Acad. Sci. Paris, Sér. I
292
,
913
916
(
1981
).
10.
Gheysens
,
L.
,
Verheyen
,
P.
, and
Verstraelen
,
L.
, “
Characterization and examples of Chen submanifolds
,”
J. Geom.
20
,
47
62
(
1983
).
11.
Haesen
,
S.
and
Ortega
,
M.
, “
Boost invariant marginally trapped surfaces in Minkowski 4-space
,”
Class. Quantum Grav.
24
,
5441
5452
(
2007
).
12.
Haesen
,
S.
and
Ortega
,
M.
, “
Marginally trapped surfaces in Minkowksi 4-space invariant under a rotational subgroup of the Lorenz group
,”
Gen. Relativ. Grav.
41
,
1819
1834
(
2009
).
13.
Haesen
,
S.
and
Ortega
,
M.
, “
Screw invariant marginally trapped surfaces in Minkowski 4-space
,”
J. Math. Anal. Appl.
355
,
639
648
(
2009
).
14.
Lane
,
E.
,
Projective Differential Geometry of Curves and Surfaces
(
University of Chicago
,
Chicago
,
1932
).
15.
Little
,
J.
, “
On singularities of submanifolds of higher dimensional Euclidean spaces
,”
Ann. Mat. Pura Appl. IV Ser.
83
,
261
335
(
1969
).
16.
Penrose
,
R.
Gravitational collapse and space-time singularities
,”
Phys. Rev. Lett.
14
,
57
59
(
1965
).
17.
Walter
R.
, “
Über zweidimensionale parabolische Flächen im vierdimensionalen affinen Raum. I: Allgemeine Flächentheorie
,”
J. Reine Angew. Math.
227
,
178
208
(
1967
).
You do not currently have access to this content.