One of the simplest models used in studying the dynamics of large-scale structure in cosmology, known as the Zeldovich approximation, is equivalent to the three-dimensional inviscid Burgers equation for potential flow. For smooth initial data and sufficiently short times it has the property that the mapping of the positions of fluid particles at any time t1 to their positions at any time t2t1 is the gradient of a convex potential, a property we call omni-potentiality. Are there other flows with this property that are not straightforward generalizations of Zeldovich flows? This is answered in the affirmative in both two and three dimensions. How general are such flows? Using a WKB technique we show that in two dimensions, for sufficiently short times, there are omni-potential flows with arbitrary smooth initial velocity. Mappings with a convex potential are known to be associated with the quadratic-cost optimal transport problem. This has important implications for the problem of reconstructing the dynamical history of the universe from the knowledge of the present mass distribution.

1.
Arnold
,
V. I.
, “
Notes on the behavior of flows of the three-dimensional ideal fluid under a small perturbation of the initial velocity field
,”
Appl. Math. Mech.
36
(
2
),
255
262
(
1972
).
2.
Bernardeau
,
F.
,
Colombi
,
S.
,
Gaztañaga
,
E.
, and
Scoccimarro
,
R.
, “
Large-scale structure of the universe and cosmological perturbation theory
,”
Phys. Rep.
367
,
1
248
(
2002
).
3.
Bertsekas
,
D. P.
, “
Auction algorithms for network flow problems: A tutorial introduction
,”
Comput. Optim. Appl.
1
,
7
66
(
1992
).
4.
Bouchet
,
F. R.
,
Colombi
,
S.
,
Hivon
,
E.
, and
Juszkiewicz
,
R.
, “
Perturbative Lagrangian approach to gravitational instability
,”
Astron. Astrophys.
296
,
575
608
(
1995
); http://adsabs.harvard.edu/abs/1995A%26A...296..575B.
5.
Brenier
,
Y.
, “
Décomposition polaire et réarrangement monotone des champs de vecteurs
,”
C. R. Acad. Sci. Paris Série I Math.
305
,
805
808
(
1987
).
6.
Brenier
,
Y.
, “
Polar factorization and monotone rearrangement of vector-valued functions
,”
Commun. Pure Appl. Math.
44
,
375
417
(
1991
).
7.
Brenier
,
Y.
,
Frisch
,
U.
,
Hénon
,
M.
,
Loeper
,
G.
,
Matarrese
,
S.
,
Mohayaee
,
R.
, and
Sobolevski
,
A.
, “
Reconstruction of the early universe as a convex optimization problem
,”
Mon. Not. R. Astron. Soc.
346
,
501
524
(
2003
).
8.
Buchert
,
T.
, “
Lagrangian theory of gravitational instability of Friedman–Lemaitre cosmologies and the ‘Zel'dovich approximation'
,”
Mon. Not. R. Astron. Soc.
254
,
729
737
(
1992
); http://adsabs.harvard.edu/abs/1992MNRAS.254..729B.
9.
Buchert
,
T.
, “
Lagrangian theory of gravitational instability of Friedman–Lemaitre cosmologies – a generic third-order model for non-linear clustering
,”
Mon. Not. R. Astron. Soc.
267
,
811
820
(
1994
); http://adsabs.harvard.edu/abs/1994MNRAS.267..811B.
10.
Buchert
,
T.
, “
Lagrangian perturbation approach to the formation of large-scale structure
,” in
Proceedings of the IOP Enrico Fermi, Course CXXXII, Dark Matter in the Universe, Varenna, 1995
, edited by
S.
Bonometto
,
J.
Primack
, and
A.
Provenzale
(
IOS Press
,
Amsterdam
,
1996
), pp.
543
564
.
11.
Buchert
,
T.
and
Ehlers
,
J.
, “
Lagrangian theory of gravitational instability of Friedman–Lemaitre cosmologies-second order approach: an improved model for non-linear clustering
,”
Mon. Not. R. Astron. Soc.
264
,
375
387
(
1993
); http://adsabs.harvard.edu/abs/1993MNRAS.264..375B.
12.
Catelan
,
P.
, “
Lagrangian dynamics in non-flat universes and non-linear gravitational evolution
,”
Mon. Not. R. Astron. Soc.
276
,
115
124
(
1995
); http://adsabs.harvard.edu/abs/1995MNRAS.276..115C.
13.
Frisch
,
U.
,
Matarrese
,
S.
,
Mohayaee
,
R.
, and
Sobolevski
,
A.
, “
A reconstruction of the initial conditions of the universe by optimal mass transportation
,”
Nature (London)
417
,
260
262
(
2002
).
14.
Hodge
,
W. V. D.
and
Pedoe
,
D.
,
Methods of Algebraic Geometry
(
Cambridge University Press
,
Cambridge, England
,
1947
), Vol.
I
, Book II.
15.
Horn
,
R. A.
and
Johnson
,
C. R.
,
Matrix Analysis
(
Cambridge University Press
,
Cambridge, England
,
1990
).
16.
Kantorovich
,
L.
, “
On the translocation of masses
,”
C. R. Acad. Sci. URSS
37
,
199
201
(
1942
).
17.
Loeper
,
G.
, “
The reconstruction problem for the Euler–Poisson system in cosmology
,”
Arch. Ration. Mech. Anal.
179
,
153
216
(
2006
).
18.
Mohayaee
,
R.
,
Mathis
,
H.
,
Colombi
,
S.
, and
Silk
,
J.
, “
Reconstruction of primordial density fields
,”
Mon. Not. R. Astron. Soc.
365
,
939
959
(
2006
).
19.
Monge
,
G.
, “
Mémoire sur la théorie des déblais et des remblais
,”
Hist. Acad. R. Sci. Paris
,
666
704
(
1781
).
20.
Moutarde
,
F.
,
Alimi
,
J. M.
,
Bouchet
,
F. R.
,
Pellat
,
R.
, and
Ramani
,
A.
, “
Precollapse scale invariance in gravitational instability
,”
Astrophys. J.
382
,
377
381
(
1991
).
21.
Nadkarni-Ghosh
,
S.
and
Chernoff
,
D. F.
, “
Extending the domain of validity of the Lagrangian approximation
,”
Mon. Not. R. Astron. Soc.
410
,
1454
1488
(
2011
); http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2966.2010.17529.x/abstract.
22.
Peebles
,
P. J. E.
, “
Tracing galaxy orbits back in time
,”
Astrophys. J. Lett.
344
,
53
56
(
1989
).
23.
Peebles
,
P. J. E.
and
Groth
,
E. J.
, “
An integral constraint for the evolution of the galaxy two-point correlation function
,”
Astron. Astrophys.
53
,
131
140
(
1976
); http://adsabs.harvard.edu/abs/1976A%26A....53..131P.
24.
Sahni
,
V.
and
Shandarin
,
S.
, “
Accuracy of Lagrangian approximations in voids
,”
Mon. Not. R. Astron. Soc.
282
,
641
645
(
1996
); http://adsabs.harvard.edu/abs/1996MNRAS.282..641S.
25.
Villani
,
C.
,
Optimal Transport, Old and New
,
Grundlehren der mathematischen Wissenschaften
, Vol.
338
(
Springer-Verlag
,
Berlin
,
2009
).
26.
Zeldovich
,
Ya. B.
, “
Gravitational instability: an approximate theory for large density perturbations
,”
Astron. Astrophys.
5
,
84
89
(
1970
); http://adsabs.harvard.edu/abs/1970A%26A.....5...84Z.
27.
See www.sdss.org for a description of the Sloan Digital Sky Survey.
You do not currently have access to this content.