There are fairly large families of unitarily inequivalent complete sets of N + 1 mutually unbiased bases (MUBs) known in |$\mathbb{C}$|CN for various prime powers N. The number of such sets is not bounded above by any polynomial as a function of N. While it is standard that there is a superficial similarity between complete sets of MUBs and finite affine planes, there is an intimate relationship between these large families and affine planes. This note briefly summarizes “old” results that do not appear to be well known concerning known families of complete sets of MUBs and their associated planes.

1.
Albert
,
A. A.
, “
Generalized twisted fields
,”
Pacific J. Math.
11
,
1
8
(
1961
).
2.
Alltop
,
W. O.
, “
Complex sequences with low periodic correlations
,”
IEEE Trans. Inf. Theory
26
,
350
354
(
1980
).
3.
Bader
,
L.
,
Kantor
,
W. M.
, and
Lunardon
,
G.
, “
Symplectic spreads from twisted fields
,”
Boll. Unione Mat. Ital.
8-A
,
383
389
(
1994
).
4.
Ball
,
S.
,
Bamberg
,
J.
,
Lavrauw
,
M.
, and
Penttila
,
T.
, “
Symplectic spreads
,”
Designs, Codes, Cryptogr.
32
,
9
14
(
2004
).
5.
Bandyopadhyay
,
S.
,
Boykin
,
P. O.
,
Roychowdhury
,
V.
, and
Vatan
,
F.
, “
A new proof for the existence of mutually unbiased bases
,”
Algorithmica
34
,
512
528
(
2002
).
6.
Bengtsson
,
I.
, “
MUBs, polytopes, and finite geometries
,” in
Foundations of Probability and Physics
, edited by
A.
Khrennikov
,
AIP Conference Proceedings
Vol.
750
(
AIP
,
Melville, NY
,
2005
), Vol. 3, pp.
63
69
.
7.
Bierbrauer
,
J.
, “
Commutative semifields from projection mappings
,”
Des. Codes Cryptogr.
61
,
187
196
(
2011
).
8.
Bierbrauer
,
J.
and
Kantor
,
W. M.
, “
A projection construction for semifields
” (submitted).
9.
Boykin
,
P. O.
,
Sitharam
,
M.
,
Tarifi
,
M.
, and
Wocjan
,
P.
, “
Real mutually unbiased bases
,” e-print arXiv:quant-ph/0502024v2.
10.
Boykin
,
P. O.
,
Sitharam
,
M.
,
Tiep
,
P. H.
, and
Wocjan
,
P.
, “
Mutually unbiased bases and orthogonal decompositions of Lie algebras
,”
Quantum Inf. Comput.
7
,
371
382
(
2007
).
11.
Budaghyan
,
L.
and
Carlet
,
C.
, “
Classes of quadratic APN trinomials and hexanomials and related structures
,”
IEEE Trans. Inf. Theory
54
,
2354
2357
(
2008
).
12.
Budaghyan
,
L.
and
Helleseth
,
T.
, “
New commutative semifields defined by new PN multinomials
,”
Cryptogr. Commun.
3
,
1
16
(
2011
).
13.
Calderbank
,
A. R.
, “
Reed Muller codes and symplectic geometry
,” in
Recent Trends in Coding Theory and its Applications
, edited by
W.-C.
Li
,
AMS/IP Studies in Advanced Mathematics
Vol.
41
(
AMS
,
Providence
,
2007
), pp.
123
147
.
14.
Calderbank
,
A. R.
,
Cameron
,
P. J.
,
Kantor
,
W. M.
, and
Seidel
,
J. J.
, “
|${\mathbb z}$|z4-Kerdock codes, orthogonal spreads, and extremal Euclidean line-sets
,”
Proc. LMS
75
,
436
480
(
1997
).
15.
Cohen
,
S. D.
and
Ganley
,
M. J.
, “
Commutative semifields, two–dimensional over their middle nuclei
,”
J. Algebra
75
,
373
385
(
1982
).
16.
Coulter
,
R. S.
and
Matthews
,
R. W.
, “
Planar functions and planes of Lenz-Barlotti class II
,”
Designs, Codes, Cryptogr.
10
,
167
184
(
1997
).
17.
Delsarte
,
P.
,
Goethals
,
J. M.
, and
Seidel
,
J. J.
, “
Bounds for systems of lines, and Jacobi polynomials
,”
Philips Res. Rep.
30
,
91
105
(
1975
).
18.
Dickson
,
L. E.
, “
On finite algebras
,”
Göttinger Nachrichten
,
358
393
(
1905
).
19.
Dillon
,
J. F.
, “
On Pall partitions for quadratic forms
” (unpublished).
20.
Ding
,
C.
and
Yuan
,
J.
, “
A family of skew Paley-Hadamard difference sets
,”
J. Comb. Theory Ser. A
113
,
1526
1535
(
2006
).
21.
Dye
,
R. H.
, “
Partitions and their stabilizers for line complexes and quadrics
,”
Ann. Mat. Pura. Appl.
114
,
173
194
(
1977
).
22.
Ganley
,
M. J.
, “
Central weak nucleus semifields
,”
Eur. J. Comb.
2
,
339
347
(
1981
).
23.
Godsil
,
C.
and
Roy
,
A.
, “
Equiangular lines, mutually unbiased bases, and spin models
,”
Eur. J. Comb.
30
,
246
262
(
2009
).
24.
Howe
,
R.
, “
Nice error bases, mutually unbiased bases, induced representations, the Heisenberg group and finite geometries
,”
Indag. Math.
16
,
553
583
(
2005
).
25.
Ivanović
,
I. D.
, “
Geometrical description of quantal state determination
,”
J. Phys. A
14
,
3241
3245
(
1981
).
26.
Kantor
,
W. M.
, “
Spreads, translation planes and Kerdock sets. I, II
,”
SIAM J. Algebraic Discrete Methods
3
,
151
165
, 308–318 (
1982
).
27.
Kantor
,
W. M.
, “
Ovoids and translation planes
,”
Can. J. Math.
34
,
1195
1207
(
1982
).
28.
Kantor
,
W. M.
, “
Projective planes of order q whose collineation groups have order q2
,”
J. Algebr. Comb.
3
,
405
425
(
1994
).
29.
Kantor
,
W. M.
, “
Codes, quadratic forms and finite geometries
,” in
Different Aspects of Coding Theory
, edited by
A. R.
Calderbank
,
Proceedings of Symposia in Applied Mathematics
Vol.
50
(
American Mathematical Society
,
Providence
,
1995
), pp.
153
177
.
30.
Kantor
,
W. M.
, “
Quaternionic line-sets and quaternionic Kerdock codes
,”
Linear Algebr. Appl.
226–228
,
749
779
(
1995
).
31.
Kantor
,
W. M.
, “
Note on Lie algebras, finite groups and finite geometries
,” in
Groups, Difference Sets, and the Monster
, edited by
K. T.
Arasu
 et al (
de Gruyter
,
Berlin
,
1996
), pp.
73
81
.
32.
Kantor
,
W. M.
, “
Commutative semifields and symplectic spreads
,”
J. Algebra
270
,
96
114
(
2003
).
33.
Kantor
,
W. M.
and
Williams
,
M. E.
, “
New flag-transitive affine planes of even order
,”
J. Comb. Theory Ser. A
74
,
1
13
(
1996
).
34.
Kantor
,
W. M.
and
Williams
,
M. E.
, “
Symplectic semifield planes and |${\mathbb z}$|z4-linear codes
,”
Trans. AMS
356
,
895
938
(
2004
).
35.
Kantor
,
W. M.
and
Williams
,
M. E.
, “
Nearly flag-transitive affine planes
,”
Adv. Geom.
10
,
161
183
(
2010
).
36.
König
,
H.
, “
Isometric imbeddings of Euclidean spaces into finite-dimensional lp-spaces
,” in
Banach Center Publications
(
PWN-Polish Scientific
,
Warsaw
,
1995
), Vol.
34
, pp.
79
87
.
37.
Lunardon
,
G.
,
Marino
,
G.
,
Polverino
,
O.
, and
Trombetti
,
R.
, “
Symplectic semifield spreads of PG(5, q) and the Veronese surface
,”
Ric. Mat.
60
,
125
142
(
2011
).
38.
Penttila
,
T.
and
Williams
,
B.
, “
Ovoids of parabolic spaces
,”
Geom. Dedic.
82
,
1
19
(
2000
).
39.
Roy
,
A.
and
Scott
,
A. J.
, “
Weighted complex projective 2-designs from bases: optimal state determination by orthogonal measurements
,”
J. Math. Phys.
48
,
072110
(
2007
).
40.
Seidel
,
J. J.
, “
Harmonics and combinatorics
,” in
Special Functions: Group Theoretical Aspects and Applications
, edited by
R. A.
Askey
 et al (
Reidel
,
Dordrecht
,
1984
), pp.
287
303
.
41.
Scharlau
,
R.
and
Tiep
,
P. H.
, “
Symplectic groups, symplectic spreads, codes, and unimodular lattices
,”
J. Algebra
194
,
113
156
(
1997
).
42.
Strohmer
,
T.
,
Heath
,
R. W.
 Jr.
, and
Paulraj
,
A. J.
, “
On the design of optimal spreading sequences for CDMA systems
,” in
The Thirty-Sixth Asilomar Conference on Signals, Systems & Computers
, edited by
M. B.
Matthews
(
IEEE
,
2002
), pp.
1434
1438
.
43.
Thas
,
J. A.
and
Payne
,
S. E.
, “
Spreads and ovoids in finite generalized quadrangles
,”
Geom. Dedic.
52
,
227
253
(
1994
).
44.
Tits
,
J.
Ovoïdes et groupes de Suzuki
,”
Arch. Math.
13
,
187
198
(
1962
).
45.
Wootters
,
W. K.
, “
A Wigner-function formulation of finite-state quantum mechanics
,”
Ann. Phys.
176
,
1
21
(
1987
).
46.
Wootters
,
W. K.
and
Fields
,
B. D.
Optimal state-determination by mutually unbiased measurements
,”
Ann. Phys.
191
,
363
381
(
1989
).
47.
Zha
,
Z.
and
Wang
,
X.
New families of perfect nonlinear polynomial functions
,”
J. Algebra
322
,
3912
3918
(
2009
).
48.
We do not use bases since automorphisms do not preserve bases (e.g., Z(b) in (2.1) does not preserve the standard basis).
49.
We avoid the term frame used in Ref. 14 so as not to conflict with other uses for that word.
50.
An affine plane of order N is a combinatorial object consisting of a set of N2points, together with N2 + N point-sets of size N called lines, such that any two distinct points are on a unique line. Then the lines fall into N + 1 “parallel classes” of size N, each of which partitions the points.
51.
See the delectable observation at the end of Ref. 6.
52.
We are identifying isomorphic vector spaces.
53.
This means that f(x + a) − f(x) = b has a unique solution x for any a ≠ 0 and b in K.
54.
Curiously, there is also a group of N2 automorphisms of π(f) that does not act on
${\mathcal F}^f$
Ff
. (This is the group of all (x, y) ↦ (x + c, y + d), c, dK, having orbits of size N and N2 on the set of all lines.)
You do not currently have access to this content.