By using the representation of its complex-conjugate pairs, we have investigated the diagonalization of a bounded linear operator on separable infinite-dimensional right quaternionic Hilbert space. The sufficient condition for diagonalizability of quaternionic operators is derived. The result is applied to anti-Hermitian operators, which is essential for solving Schr${\rm \ddot{o}}$dinger equation in quaternionic quantum mechanics.
REFERENCES
1.
G.
Birkhoff
and J.
von Neumann
, Ann. Math.
37
(4
), 823
(1936
).2.
D.
Finkelstein
, J. M.
Jauch
, S.
Schiminovice
, and D.
Speiser
, J. Math. Phys.
3
(2
), 207
(1962
).3.
D.
Finkelstein
, J. M.
Jauch
, S.
Schiminovice
, and D.
Speiser
, J. Math. Phys.
3
, 788
(1963
).4.
D.
Finkklstein
, J. M.
Jauch
, and D.
Speiser
, “Notes on quaternion quantum mechanics
,” in Logico-Algebraic Approach to Quantum Echanics, Volume II: Contemporary Consolidation
, edited by C. A.
Hooker
(Riedel
, Dordrecht
, 1979
), pp. 367
–421
.5.
S. L.
Adler
, Commun. Math. Phys.
104
(4
), 611
(1986
).6.
A. J.
Davies
and B. H. J.
McKellar
, Phys. Rev. A
46
(7
), 3671
(1992
).7.
F.
Zhang
, Linear Algebra Appl.
251
, 21
(1997
).8.
S.
De Leo
and G.
Scolarici
, J. Phys. A
33
, 2971
(2000
).9.
A.
Blasi
, G.
Scolarici
, and L.
Solombrino
, J. Math. Phys.
46
(4
), 042104
(2005
).10.
G.
Scolarici
, J. Phys. A
35
, 7493
(2002
).11.
G.
Scolarici
and L.
Solombrino
, J. Math. Phys.
44
(10
), 4405
(2003
).12.
13.
14.
V. G.
Kravchenko
and V. V.
Kravchenko
, J. Phys. A
36
(44
), 11285C11297
(2003
).15.
T.
Jiang
, J. Math. Phys.
46
(5
), 052106
(2005
).16.
F.
Zhang
, Linear Algebra Appl.
424
, 139
(2007
).17.
P. A. M.
Dirac
, The Principles of Quantum Mechanics
(Oxford University Press
, New York
, 1958
).18.
D. J.
Griffiths
, Introduction to Quantum Mechanics
, 2nd ed. (Addison-Wesley
, Reading, MA
, 2005
).19.
Y. H.
Au-Yeung
, Linear Multilinear Algebra
16
, 93
(1984
).20.
A.
Soffer
and L. P.
Horwitz
, J. Math. Phys.
24
(12
), 2780
(1983
).21.
L.
Huang
and W.
So
, Linear Algebra Appl.
323
, 105
(2001
).22.
R. M. W.
Wood
, Bull. London Math. Soc.
17
, 137
(1985
).23.
H.
Radjavi
and P.
Rosenthal
, Invariant Subspaces
, 2nd ed. (Springer-Verlag
, New York
, 1973
).© 2012 American Institute of Physics.
2012
American Institute of Physics
You do not currently have access to this content.