We prove that the holonomy group at infinity of the Painlevé VI equation is virtually commutative.

1.
Cantat
,
Loray F.
,
, “
Holomorphic dynamics, Painlevé VI equation, and character varieties
,”
Ann. Inst. Fourier
59
(
7
),
2927
2978
(
2009
).
2.
Casale
,
G.
, “
Une preuve galoisienne de l'irréductibilité au sens de Nishioka-Umemura de la 1ere équation de Painlevé
,”
Astérisque
323
,
83
100
(
2009
).
3.
Casale
,
G.
, “
The Galois groupoid of Picard-Painlevé sixth equation
,”
RIMS Kôkyûroku Bessatsu, Res. Inst. Math. Sci. (RIMS), Kyoto
,
B2
,
15
20
(
2007
).
4.
Casale
,
G.
, “
An introduction to Malgrange pseudogroup
,”
Séminaires et Congrès
23
,
89
113
(
2011
).
5.
Casale
,
G.
, “
Liouvillian first integrals of differential equations
,”
Banach Center Publ.
94
,
153
161
(
2011
).
6.
Hain
,
R. M.
, “
The geometry of the mixed Hodge structure on the fundamental group
,”
Proc. Symp. Pure Math.
46
,
247
281
(
1987
).
7.
Horozov
,
E.
and
Stoyanova
,
T.
, “
Non-Integrability of some Painlevé VI equations and dilogarithms
,”
Regular Chaotic Dyn.
12
(
6
),
622
629
(
2007
).
8.
Iwasaki
,
K.
,
Kimura
,
H.
,
Shimomura
,
S.
, and
Yoshida
,
M.
, “
From Gauss to Painlevé, A Modern Theory of Special Functions
,”
Aspects of Mathematics
, E16 (
Vieweg & Shon
,
Friedr. Vieweg & Sohn, Braunschweig
,
1991
).
9.
Malgrange
,
B.
, “
Le groupoide de Galois d'un feuilletage
,”
Monographie 38, Enseign. Math.
2
,
465
501
(
2001
).
10.
Morales-Ruiz
,
J. J.
and
Ramis
,
J. P.
, “
Galoisian obstructions to integrability of Hamiltonian systems. I, II
,”
Methods Appl. Anal.
8
(
1
),
33
95
, 97–111, (
2001
).
11.
Morales-Ruiz
,
J. J.
,
Ramis
,
J. P.
, and
Simo
,
C.
, “
Integrability of Hamiltonian systems and differential Galois groups of higher variational equations
,”
Ann. Sci. École Norm. Sup.
40
(
6
),
845
884
(
2007
).
12.
Morales-Ruiz
,
J. J.
, “
A remark about the Painlevé transcendents
,”
Sémin. Congr.
14
,
229
235
(
2006
).
13.
Morales-Ruiz
,
J. J.
, “
Differential Galois theory and non-integrability of Hamiltonian systems
,”
Prog. Math.
179
, Birkhäuser Verlag, Basel,
1999
.
14.
Morales-Ruiz
,
J. J.
,
Ramis
,
J.
, “
Pierre Integrability of dynamical systems through differential Galois theory: a practical guide
,” in
Differential Algebra, Complex Analysis and Orthogonal Polynomials
(
American Mathematics Society
,
Providence, RI
,
2010
), pp.
143
220
, 509.
15.
Okamoto
,
K.
, “
Sur les feuilletages associés aux équations du second ordre à points critiques fixes de P. Painlevé
,”
Japan. J. Math. (N.S.)
5
(
1
),
1
79
(
1979
).
16.
Stoyanova
,
T.
, “
Non-integrability of Painlevé VI equations in the Liouville sense
,”
Nonlinearity
22
(
9
),
2201
2230
(
2009
).
17.
Tretkoff
,
C.
and
Tretkoff
,
M.
, “
Solution of the inverse problem of differential Galois theory in the classical case
,”
Am. J. Math.
101
(
6
),
1327
1332
(
1979
).
18.
Watanabe
,
H.
, “
Birational canonical transformations and classical solutions of the sixth Painlevé equation
,”
Ann. Scuola Norm. Sup. Pisa Cl. Sci.
(
4
)
27
, (1998), no. 3-4,
379
425
(
1999
).
You do not currently have access to this content.