Given a countably generated rigid C*-tensor category |${\sf C}$|C, we construct a planar algebra P whose category of projections |${\sf Pro}$|Pro is equivalent to |${\sf C}$|C. From P, we use methods of Guionnet-Jones-Shlyakhtenko-Walker to construct a rigid C*-tensor category |${\sf Bim}$|Bim whose objects are bifinite bimodules over an interpolated free group factor, and we show |${\sf Bim}$|Bim is equivalent to |${\sf Pro}$|Pro. We use these constructions to show |${\sf C}$|C is equivalent to a category of bifinite bimodules over |$L(\mathbb {F}_\infty )$|L(F).

1.
Bisch
,
D.
, “
Bimodules, higher relative commutants and the fusion algebra associated to a subfactor
,”
Operator Algebras and their Applications
(Fields Institute Communications, Waterloo, ON, 1994/1995) (
American Mathematical Society
,
Providence, RI
,
1997
), pp.
13
63
(preview at google books).
2.
Brothier
,
A.
, “
Unshaded planar algebras and their associated I I1 factors
,”
J. Funct. Anal.
262
(
9
),
3839
3871
(
2012
);
3.
Connes
,
A.
, “
On the spatial theory of von Neumann algebras
,”
J. Funct. Anal.
35
(
2
),
153
164
(
1980
).
4.
Dykema
,
K.
and
Redelmeier
,
D.
, “
The amalgamated free product of hyperfinite von Neumann algebras over finite dimensional subalgebras
,” preprint arXiv:1110.5597 (
2011
).
5.
Dykema
,
K.
, “
Free products of hyperfinite von Neumann algebras and free dimension
,”
Duke Math. J.
69
(
1
),
97
119
(
1993
).
6.
Dykema
,
K. J.
, “
Amalgamated free products of multi-matrix algebras and a construction of subfactors of a free group factor
,”
Am. J. Math.
117
(
6
),
1555
1602
(
1995
).
7.
Dykema
,
K.
, “
A description of amalgamated free products of finite von Neumann algebras over finite-dimensional subalgebras
,”
Bull. London Math. Soc.
43
(
1
),
63
74
(
2011
).
8.
Evans
,
D. E.
and
Kawahigashi
,
Y.
, “
Quantum symmetries on operator algebras
,”
Oxford Mathematical Monographs
(
Oxford Science Publications/Clarendon
,
Oxford University Press/New York
,
1998
), pp.
xvi+829
.
9.
Falguières
,
S.
and
Raum
,
S.
, “
Tensor C*-categories arising as bimodule categories of I I1 factors
,” preprint arXiv:1112.4088 (
2012
).
10.
Falguières
,
S.
and
Vaes
,
S.
, “
The representation category of any compact group is the bimodule category of a I I1 factor
,” preprint arXiv:0811.1764 (
2011
).
11.
Ghosh
,
S. K.
, “
Planar algebras: A category theoretic point of view
,”
J. Algebra
339
,
27
54
(
2011
);
12.
Guionnet
,
A.
,
Jones
,
V. F. R.
, and
Shlyakhtenko
,
D.
, “
Random matrices, free probability, planar algebras and subfactors
,”
Quanta of Maths, Clay Math. Proc.
, Vol.
11
, (
American Mathematical Society
,
Providence, RI
,
2010
), pp.
201
239
;
13.
Guionnet
,
A.
,
Jones
,
V. F. R.
, and
Shlyakhtenko
,
D.
, “
A semi-finite algebra associated to a subfactor planar algebra
,”
J. Funct. Anal.
261
(
5
),
1345
1360
(
2011
);
14.
Hartglass
,
M.
, “
Free product von Neumann algebras associated to graphs and Guionnet, Jones, Shlyakhtenko subfactors in infinite depth
,” preprint arXiv:1208.2933 (
2012
).
15.
Hiai
,
F.
and
Izumi
,
M.
, “
Amenability and strong amenability for fusion algebras with applications to subfactor theory
,”
Int. J. Math.
9
(
6
),
669
722
(
1998
).
16.
Hayashi
,
T.
and
Yamagami
,
S.
, “
Amenable tensor categories and their realizations as AFD bimodules
,”
J. Funct. Anal.
172
(
1
),
19
75
(
2000
).
17.
Jones
,
V. F. R.
, “
Index for subfactors
,”
Invent. Math.
72
(
1
),
1
25
(
1983
).
18.
Jones
,
V. F. R.
, “
Planar algebras I
,” preprint arXiv:math/9909027 (
1999
).
19.
Jones
,
V. F. R.
, “
Two subfactors and the algebraic decomposition of bimodules over I I1 factors
,” preprint available at http://math.berkeley.edu/~vfr.
20.
Jones
,
V. F. R.
, “
Jones’ notes on planar algebras
,” available at http://math.berkeley.edu/vfr/VANDERBILT/pl21.pdf.
21.
Jones
,
V.
,
Shlyakhtenko
,
D.
, and
Walker
,
K.
, “
An orthogonal approach to the subfactor of a planar algebra
,”
Pac. J. Math.
246
(
1
),
187
197
(
2010
).
22.
Kato
,
T.
, “
Perturbation theory for linear operators
,”
Classics in Mathematics
(
Springer-Verlag
,
Berlin
,
1995
), reprint of the 1980 ed.
23.
Mac Lane
,
S.
, “
Categories for the working mathematician
,” 2nd ed.,
Graduate Texts in Mathematics
Vol. 5 (
Springer-Verlag
,
New York
,
1998
).
24.
Morrison
,
S.
and
Penneys
,
D.
, “
Constructing spoke subfactors using the jellyfish algorithm
,” preprint arXiv:1208.3637 (
2012
).
25.
Morrison
,
S.
,
Peters
,
E.
, and
Snyder
,
N.
, “
Skein theory for the D2n planar algebras
,”
J. Pure Appl. Algebra
214
(
2
),
117
139
(
2010
);
26.
Müger
,
M.
, “
Tensor categories: A selective guided tour
,”
Revista de la UMA
51
(
1
),
95
163
(
2010
).
27.
Ng
,
S.-H.
and
Schauenburg
,
P.
, “
Higher Frobenius-Schur indicators for pivotal categories
,”
Hopf Algebras and Generalizations
,
Contemporary Mathematics
Vol.
441
(
American Mathematical Society
,
Providence, RI
,
2007
), pp.
63
90
;
28.
Ocneanu
,
A.
, “
Quantized groups, string algebras and Galois theory for algebras
,”
Operator Algebras and Applications
, Vol. 2,
London Mathematical Society, Lecture Note Series
, Vol.
136
(
Cambridge University Press
,
Cambridge
,
1988
), pp.
119
172
.
29.
Penneys
,
D.
, “
A planar calculus for infinite index subfactors
,” Commun. Math. Phys. (
2012
); e-print arXiv:1110.3504.
30.
Popa
,
S.
, “
Markov traces on universal Jones algebras and subfactors of finite index
,”
Invent. Math.
111
(
2
),
375
405
(
1993
).
31.
Popa
,
S.
, “
Classification of amenable subfactors of type II
,”
Acta Math.
172
(
2
),
163
255
(
1994
).
32.
Popa
,
S.
, “
An axiomatization of the lattice of higher relative commutants of a subfactor
,”
Invent. Math.
120
(
3
),
427
445
(
1995
).
33.
Popa
,
S.
, “
Universal construction of subfactors
,”
J. Reine Angew. Math.
543
,
39
81
(
2002
).
34.
Popa
,
S.
and
Shlyakhtenko
,
D.
, “
Universal properties of L(F) in subfactor theory
,”
Acta Math.
191
(
2
),
225
257
(
2003
).
35.
Shlyakhtenko
,
D.
, “
A-valued semicircular systems
,”
J. Funct. Anal.
166
(
1
),
1
47
(
1999
).
36.
Yamagami
,
S.
, “
C*-tensor categories and free product bimodules
,”
J. Funct. Anal.
197
(
2
),
323
346
(
2003
).
37.
Yamagami
,
S.
, “
Representations of multicategories of planar diagrams and tensor categories
,” preprint arXiv:1207.1923.
You do not currently have access to this content.