By using the moment algebra of the Vlasov kinetic equation, we characterize the integrable Bloch-Iserles system on symmetric matrices [Bloch, A. M., Brînzănescu, V., Iserles, A., Marsden, J. E., and Ratiu, T. S., “

A class of integrable flows on the space of symmetric matrices
,” Commun. Math. Phys.290, 399
435
(2009)] as a geodesic flow on the Jacobi group
${\rm Jac}(\mathbb {R}^{2n})={\rm Sp}(\mathbb {R}^{2n})\,\circledS \,{\rm H}(\mathbb {R}^{2n})$
Jac (R2n)= Sp (R2n)H(R2n)
. We analyze the corresponding Lie-Poisson structure by presenting a momentum map, which both untangles the bracket structure and produces particle-type solutions that are inherited from the Vlasov-like interpretation. Moreover, we show how the Vlasov moments associated to Bloch-Iserles dynamics correspond to particular subgroup inclusions into a group central extension (first discovered by Ismagilov, Losik, and Michor [“
A 2-cocycle on a group of symplectomorphisms
,” Mosc. Math. J.6, 307
315
(2006)]
), which in turn underlies Vlasov kinetic theory. In the most general case of Bloch-Iserles dynamics, a generalization of the Jacobi group also emerges naturally.

2.
Benney
,
D. J.
, “
Properties of long nonlinear waves
,”
Stud. Appl. Math.
52
,
45
50
(
1973
).
3.
Berceanu
,
S. A. A.
, “
Coherent states associated to the real Jacobi group
,”
AIP Conf. Proc.
956
,
233
239
(
2007a
).
4.
Berceanu
,
S. A. A.
, “
Coherent states associated to the Jacobi Group a variation on a theme by Erich-Kähler
,”
J. Geom. Symmetry Phys.
9
,
1
8
(
2007b
).
5.
Berceanu
,
S. A. A.
, “
Generalized squeezed states for the Jacobi group
,”
AIP Conf. Proc.
1079
,
67
75
(
2008
).
6.
Berceanu
,
S. A. A.
, “
The Jacobi group and the squeezed states-some comments
,”
AIP Conf. Proc.
1191
,
21
29
(
2009
).
7.
Berndt
,
R.
, “
Coadjoint orbits and representations of the Jacobi group
,” Institut des Hautes Études Scientifiques, France, 2003; IHES Preprint M/03/37.
8.
Berndt
,
R.
, “
Marsden-Weinstein reduction, orbits and representations of the Jacobi group
,” in
Automorphic Forms and Zeta Functions
, edited by
S.
Bcherer
,
T.
Ibukiyama
,
M.
Kaneko
, and
F.
Sato
(
World Scientific
,
2006
).
9.
Bloch
,
A. M.
and
Iserles
,
A.
, “
On an isospectral Lie-Poisson system and its Lie algebra
,”
Found. Comput. Math.
6
(
1
),
121
144
(
2006
).
10.
Bloch
,
A. M.
,
Brînzănescu
,
V.
,
Iserles
,
A.
,
Marsden
,
J. E.
, and
Ratiu
,
T. S.
, “
A class of integrable flows on the space of symmetric matrices
,”
Commun. Math. Phys.
290
,
399
435
(
2009
).
11.
Camassa
,
R.
and
Holm
,
D. D.
, “
An integrable shallow water equation with peaked solitons
,”
Phys. Rev. Lett.
71
,
1661
1664
(
1993
).
12.
Channell
,
P. J.
, “
The moment approach to charged particle beam dynamics
,”
IEEE Trans. Nucl. Sci.
30
,
2607
2609
(
1983
).
13.
Channell
,
P. J.
, “
Canonical integration of the collisionless Boltzmann equation
,”
Ann. N. Y. Acad. Sci.
751
,
152
161
(
1995
).
14.
Chen
,
M.
,
Liu
,
S.
, and
Zhang
,
Y.
, “
A two-component generalization of the Camassa-Holm equation and its solutions
,”
Lett. Math. Phys.
75
,
1
15
(
2006
).
15.
Gay-Balmaz
,
F.
and
Ratiu
,
T. S.
, “
Geometry of nonabelian charged fluids
,”
Dyn. Partial Differ. Equ.
8
(
1
),
5
19
(
2011
).
16.
Gay-Balmaz
,
F.
and
Tronci
,
C.
, “
The helicity and vorticity of liquid-crystal flows
,”
Proc. R. Soc. A
467
,
1197
1213
(
2011
).
17.
Gibbons
,
J.
, “
Collisionless Boltzmann equations and integrable moment equations
,”
Phys. D
3
,
503
511
(
1981
).
18.
Gibbons
,
J.
,
Holm
,
D. D.
, and
Tronci
,
C.
, “
Singular solutions for geodesic flows of Vlasov moments
,”
Math. Sci. Res. Inst. Publ.
55
,
199
220
(
2005
).
19.
Gibbons
,
J.
,
Holm
,
D. D.
, and
Tronci
,
C.
, “
Vlasov moments, integrable systems and singular solutions
,”
Phys. Lett. A
372
,
1024
1033
(
2008a
).
20.
Gibbons
,
J.
,
Holm
,
D. D.
, and
Tronci
,
C.
, “
Geometry of Vlasov kinetic moments
,”
Phys. Lett. A
408
,
4184
4196
(
2008b
).
21.
Guillemin
,
V.
and
Sternberg
,
S.
,
Symplectic Techniques in Physics
(
Cambridge University Press
,
Cambridge
,
1984
).
22.
Holm
,
D. D.
, “
Hamiltonian dynamics and stability analysis of neutral electromagnetic fluids with induction
,”
Physica D
25
,
261
287
(
1987
).
23.
Holm
,
D. D.
and
Ivanov
,
R.
, “
Multi-component generalizations of the CH equation: geometrical aspects, peakons and numerical examples
,”
J. Phys. A: Math. Theor.
43
,
492001
(
2010
).
24.
Holm
,
D. D.
and
Ivanov
,
R.
, “
Two-component CH system: inverse scattering, peakons and geometry
,”
Inverse Probl.
27
,
045013
(
2011
).
25.
Holm
,
D. D.
and
Kupershmidt
,
B. A.
, “
Poisson structures of superfluids
,”
Phys. Lett. A
91
(
9
),
425
430
(
1982
).
26.
Holm
,
D. D.
,
Lysenko
,
W. P.
, and
Scovel
,
J. C.
, “
Moment invariants for the Vlasov equation
,”
J. Math. Phys.
31
,
1610
1615
(
1990
).
27.
Holm
,
D. D.
,
Náraigh
,
L. Ó
, and
Tronci
,
C.
, “
Singular solutions of a modified two-component Camassa-Holm equation
,”
Phys. Rev. E
79
,
016601
(
2009
).
28.
Holm
,
D. D.
and
Tronci
,
C.
, “
The geodesic Vlasov equation and its integrable moment closures
,”
J. Geom. Mech.
1
,
181
208
(
2009b
).
29.
Ismagilov
,
R. S.
,
Losik
,
M.
, and
Michor
,
P. W.
, “
A 2-cocycle on a group of symplectomorphisms
,”
Mosc. Math. J.
6
,
307
315
(
2006
).
30.
Klimontovich
,
Y. L.
,
The Statistical Theory of Non-equilibrium Processes in a Plasma
(
MIT
,
Cambridge, MA
,
1967
).
31.
Kostant
,
B.
, “
Quantization and unitary representations
,”
Lect. Notes Math.
170
,
87
208
(
1970
).
32.
Krishnaprasad
,
P. S.
and
Marsden
,
J. E.
, “
Hamiltonian structure and stability for rigid bodies with flexible attachments
,”
Arch. Ration. Mech. Anal.
98
,
71
93
(
1987
).
33.
Marsden
,
J. E.
, “
A group theoretic approach to the equations of plasma physics
,”
Can. Math. Bull.
25
,
129
142
(
1982
).
34.
Marsden
,
J. E.
,
Misiołek
,
G.
,
Ortega
,
J.-P.
,
Perlmutter
,
M.
, and
Ratiu
,
T. S.
,
Hamiltonian Reduction by Stages
,
Springer Lecture Notes in Mathematics Vol. 1913
(
Springer-Verlag
,
2007
).
35.
Marsden
,
J. E.
and
Ratiu
,
T. S.
,
Introduction to Mechanics and Symmetry
(
Springer
,
1999
).
36.
Marsden
,
J. E.
and
Weinstein
,
A.
, “
The Hamiltonian structure of the Maxwell-Vlasov equations
,”
Physica D
4
,
394
406
(
1981
).
37.
Marsden
,
J. E.
,
Weinstein
,
A.
,
Ratiu
,
T. S.
,
Schmid
,
R.
and
Spencer
,
R. G.
, “
Hamiltonian systems with symmetry, coadjoint orbits and plasma physics
,”
Atti Accad. Sci. Torino, Cl. Sci. Fis., Mat. Nat.
117
,
289
340
(
1983
).
38.
Morrison
,
P. J.
, “
Poisson brackets for fluids and plasmas
,”
AIP Conf. Proc.
88
,
13
46
(
1982
).
39.
Nijenhuis
,
A.
, “
Jacobi-type identities for bilinear differential concomitants of certain tensor fields I, II
,”
Indag. Math.
17
,
390
403
(
1955
).
40.
Neeb
,
K.-H.
and
Vizman
,
C.
, “
Flux homomorphisms and principal bundles over infinite dimensional manifolds
,”
Monatsh. Math.
139
(
4
),
309
333
(
2003
).
41.
Ratiu
,
T. S.
and
Schmid
,
R.
, “
The differentiable structure of three remarkable diffeomorphism groups
,”
Math. Z.
177
,
81
100
(
1981
).
42.
Scovel
,
C.
and
Weinstein
,
A.
, “
Finite-dimensional Lie-Poisson approximations to Vlasov-Poisson equations
,”
Commun. Pure Appl. Math.
47
,
683
709
(
1994
).
43.
Shuman
,
K. L.
, “
Complete signal processing bases and the Jacobi group
,”
J. Math. Anal. Appl.
278
,
203
213
(
2003
).
44.
Souriau
,
J.-M.
,
Structure des Systèmes Dynamiques
(
Dunod
,
Paris
,
1970
).
45.
Van Hove
,
L.
, “
Sur le problème des relations entre les transformations unitaires de la mécanique quantique et les transformations canoniques de la mécanique classique
,”
Bull. Cl. Sci., Acad. R. Belg.
37
(
5
),
610
620
(
1951
).
46.
Vizman
,
C.
, “
Some remarks on the quantomorphism group
,” in
Proceedings of the Third International Workshop on Differential Geometry and its Applications
.
Vizman
,
C.
, [
Gen. Math.
5
,
393
395
(
1997
)].
47.
Vizman
,
C.
, “
Abelian extension via prequantization
,”
Ann. Global Anal. Geom.
39
(
4
),
361
386
(
2010
).
48.
Weinstein
,
A.
, “
The local structure of Poisson manifolds
,”
J. Diff. Geom.
18
,
523
557
(
1983
).
49.
Yang
,
Y.-H.
, “
Orbit method for the Jacobi group
,” Institute for Mathematical Sciences, National University of Singapore, 2003; IMS Preprint Ser. 2003-24.
50.
Yang
,
Y.-H.
, “
The method of orbits for real Lie groups
,”
Kyungpook Math. J.
42
(
2
),
199
272
(
2002
).
You do not currently have access to this content.