We construct a universal solution of the generalized coboundary equation in the case of quantum affine algebras, which is an extension of our previous work to |$U_q(A^{(1)}_r)$|. This universal solution has a simple Gauss decomposition which is constructed using Sevostyanov's characters of twisted quantum Borel algebras. We show that in the evaluation representations it gives a vertex-face transformation between a vertex type solution and a face type solution of the quantum dynamical Yang-Baxter equation. In particular, in the evaluation representation of |$U_q(A_1^{(1)})$|, it gives Baxter's well-known transformation between the 8-vertex model and the interaction-round-faces (IRF) height model.
REFERENCES
1.
G. E.
Andrews
, R. J.
Baxter
, and P. J.
Forrester
, “Eight-vertex SOS model and generalized Rogers-Ramanujan-type identities
,” J. Stat. Phys.
35
, 193
(1984
).2.
D.
Arnaudon
, E.
Buffenoir
, E.
Ragoucy
, and Ph.
Roche
, “Universal solutions of quantum dynamical Yang-Baxter equations
,” Lett. Math. Phys.
44
, 201
(1998
);preprint arXiv:q-alg/9712037.
3.
O.
Babelon
, “Universal exchange algebra for Bloch waves and Liouville theory
,” Commun. Math. Phys.
139
, 619
–643
(1991
).4.
J.
Balog
, L.
Dabrowski
, and L.
Feher
, “Classical r-matrix and exchange algebra in WZNW and Toda theories
,” Phys. Lett. B
244
(2
), 227
(1990
).5.
6.
R. J.
Baxter
, “Eight-vertex model in lattice statistics and one-dimensional anisotropic Heisenberg chain. II. Equivalence to a generalized ice-type lattice
,” Ann. Phys.
76
, 25
–47
(1973
).7.
J.
Beck
, “Convex bases of PBW type for quantum affine algebras
,” Commun. Math. Phys.
165
, 193
–200
(1994
);e-print arXiv:hep-th/9407003.
8.
A. A.
Belavin
, “Dynamical symmetries of integrable quantum systems
,” Nucl. Phys. B
180
, 189
–200
(1981
).9.
A. A.
Belavin
and V. G.
Drinfeld
, “Triangle equations and simple Lie algebras
,” Sov. Sci. Rev., Sect. C, Math. Phys. Rev.
4
, 93
–165
(1984
).10.
E.
Buffenoir
, Ph.
Roche
, and V.
Terras
, “Quantum dynamical coboundary equation for finite dimensional simple Lie algebras
,” Adv. Math.
214
, 181
–229
(2007
);e-print arXiv:math.QA/0512500.
11.
V.
Chari
and A.
Pressley
, “Quantum affine algebras and their representations
,” Canadian Math. Soc. Conf. Proc.
16
, 59
–78
(1995
);e-print arXiv:hep-th/9411145.
12.
I.
Damiani
, “La R-matrice pour les algèbres quantiques de type affine non tordu (The R-matrix for non-twisted affine quantum algebras)
,” Ann. Sci. Ec. Normale Super.
31
(4
), 493
–523
(1998
).13.
P.
Etingof
, “On the dynamical Yang-Baxter equation
,” in Proceedings of the International Congress of Mathematicians, Beijing, 2002
;e-print arXiv:math.QA/0207008.
14.
P.
Etingof
, “Whittaker functions on quantum groups and q-deformed Toda operators
,” Am. Math. Soc. Transl. Ser. 2
194
, 9
–25
(1999
);e-print arXiv:math.QA/9901053.
15.
P.
Etingof
and D.
Kazhdan
, “Quantization of Lie bialgebras III
,” Sel. Math., New Ser.
4
, 233
–269
(1998
);e-print arXiv:q-alg/9610030.
16.
P.
Etingof
and D.
Nikshych
, “Vertex-IRF transformations and quantization of dynamical r-matrices
,” Math. Res. Lett.
8
(3
), 331
–346
(2001
);e-print arXiv:math.QA/0103079.
17.
P.
Etingof
and O.
Schiffmann
, “Twisted traces of intertwiners and quantum dynamical R-matrices corresponding to generalized Belavin-Drinfeld triples
,” Commun. Math. Phys.
205
, 19
–52
(1999
);e-print arXiv:math.QA/9801135.
18.
P.
Etingof
and O.
Schiffmann
, “Lectures on the dynamical Yang-Baxter equation
,” Quantum Groups and Lie Theory (Durham, 1999), London Math. Soc. Lecture Notes
290
, 89
–129
(2001
);e-print arXiv:math.QA/9908064.
19.
P.
Etingof
and A.
Varchenko
, “Geometry and classification of solutions of the classical dynamical Yang-Baxter equation
,” Commun. Math. Phys.
192
(1
), 77
–120
(1998
);e-print arXiv:q-alg/9703040.
20.
P.
Etingof
, T.
Schedler
, and O.
Schiffmann
, “Explicit quantization of dynamical r-matrices for finite dimensional semisimple Lie algebras
,” J. Am. Math. Soc.
13
, 595
–609
(2000
);e-print arXiv:math.QA/9912009.
21.
P.
Etingof
, O.
Schiffmann
, and A.
Varchenko
, “Traces of intertwiners for quantum groups and difference equations, II
,” Lett. Math. Phys.
62
(2
), 143
–158
(2002
);e-print arXiv:math.QA/0207157.
22.
G.
Felder
, “Elliptic quantum groups
,” in Proceedings of the International Congress of Mathematical Physics, Paris, 1994
(International, 1995
), pp. 211
–218
.23.
G.
Felder
and A.
Varchenko
, “Algebraic Bethe ansatz for the elliptic quantum groupEτ,η(sl2)
,” Nucl. Phys. B
480
, 485
–503
(1996
);e-print arXiv:q-alg/9605024.
24.
M.
Jimbo
, H.
Konno
, S.
Odake
, and J.
Shiraishi
, “Quasi-Hopf twistors for elliptic quantum groups
,” Transform. Groups
4
(4
), 303
–327
(1999
);e-print arXiv:q-alg/9712029.
25.
M.
Jimbo
, T.
Miwa
, and M.
Okado
, “Solvable lattice models related to the vector representation of classical simple Lie algebras
,” Commun. Math. Phys.
116
, 507
–525
(1988
).26.
M.
Jimbo
, T.
Miwa
, and M.
Okado
, “Solvable lattice models whose states are dominant integral weights of |$A_r^{(1)}$|
,” Lett. Math. Phys.
14
, 123
(1987
).27.
S.
Khoroshkin
, A. A.
Stolin
, and V. N.
Tolstoy
, “Gauss decomposition of trigonometric R-matrices
,” Mod. Phys. Lett.
A10
, 1375
–1392
(1995
);e-print arXiv:hep-th/9404038.
28.
E.
Karolinsky
, A.
Stolin
, and V.
Tarasov
, “Equivariant quantization of Poisson homogeneous spaces and Kostant's problem
,” e-print arXiv:math.QA/0908.0349.29.
S.
Khoroshkin
and V. N.
Tolstoy
, “Universal R-matrix for quantized (super) algebras
,” Commun. Math. Phys.
141
, 559
(1991
).30.
S.
Khoroshkin
and V. N.
Tolstoy
, “The universal R-matrix for quantum non-twisted affine Lie algebras
,” Funkc. Anal. Priloz.
26
(1
), 85
–88
(1992
).31.
O.
Schiffmann
, “On classification of dynamical r-matrices
,” Math. Res. Lett.
5
, 13
–30
(1998
);e-print arXiv:q-alg/9706017.
32.
A.
Sevostyanov
, “Quantum deformation of Whittaker modules and Toda lattice
,” Duke Math. J.
105
(2
), 211
–238
(2000
);e-print arXiv:math.QA/9905128.
© 2012 American Institute of Physics.
2012
American Institute of Physics
You do not currently have access to this content.