The inversion operators on a lattice in finite phase plane are used for building a complete set of mutually orthogonal Hermitian operators. The lattice is given by tc in the x direction and by

$s\hbar \frac{2\pi }{Mc}$
s2πMc in the p-direction; c is an arbitrary length constant and M is the dimension of the space; s and t assume the values from 0 to M − 1. For M odd the M2 inversion operators on the lattice form a complete set of mutually orthogonal operators. For M even we assign a sum of 4 inversion operators (a quartet) to each site of the lattice (t, s). We prove that these quartets for t, s = 0, 1, …, M − 1 form a mutually orthogonal set of M2 Hermitian operators.

1.
H.
Weyl
,
Theory of Groups and Quantum Mechanics
(
Dover
,
New York
,
1950
).
2.
J.
Schwinger
,
Proc. Natl. Acad. Sci. U.S.A.
46
,
570
(
1960
).
3.
5.
D.
Cohendet
,
Ph.
Combe
,
M.
Sirugue
, and
M.
Sirugue-Collin
,
J. Phys. A
1
,
2875
(
1988
).
6.
M.
Horibe
,
A.
Takami
,
F.
Hashimoto
, and
A.
Hayashi
,
Phys. Rev. A
65
,
032105
(
2002
).
8.
C.
Miquel
,
J. P.
Paz
, and
M.
Saraceno
,
Phys. Rev. A
65
,
062309
(
2002
).
9.
J.
Zak
,
J. Phys. A: Math. Theor.
44
,
345305
(
2011
).
10.
A.
Vourdas
,
Rep. Prog. Phys.
67
,
267
(
2004
).
11.
G.
Bjork
,
A. B.
Klimov
, and
L. L.
Sanchez-Soto
,
Prog. Opt.
51
,
469
(
2008
).
12.
T.
Durt
,
B. G.
Englert
,
I.
Bengtsson
, and
K.
Zyczkowski
,
Int. J. Quantum Inf.
8
,
535
(
2010
).
13.
A.
Grossmann
,
Commun. Math. Phys.
48
,
191
(
1976
).
14.
15.
A. M. F.
Rivas
and
A. M.
Ozorio de Almeida
,
Ann. Phys.
276
,
223
(
1999
).
16.
R. J.
Glauber
,
Phys. Rev.
131
,
2766
(
1963
).
18.
J. E.
Moyal
,
Proc. Cambridge Philos. Soc.
41
,
99
(
1949
).
19.
C. L.
Metha
,
J. Math. Phys.
5
,
677
(
1964
).
20.
J. G.
Kirkwood
,
Phys. Rev.
44
,
31
(
1933
).
21.
A. N.
Rihaczek
,
IEEE Trans. Inf. Theory
14
,
369
(
1968
).
22.
J. H.
Hannay
and
M. V.
Berry
,
Physica D
1
,
267
(
1980
).
23.
O.
Agam
and
N.
Brenner
,
J. Phys. A
28
,
1345
(
1995
).
24.
A.
Arguelles
and
T.
Dittrich
,
Physica A
356
,
72
(
2005
).
You do not currently have access to this content.