We solve the Gardner deformation problem for the N = 2 supersymmetric a = 4 Korteweg–de Vries equation [P. Mathieu, “Supersymmetric extension of the Korteweg–de Vries equation,” J. Math. Phys. 29(11), 2499–2506 (1988)]. We show that a known zero-curvature representation for this super-equation yields the system of new nonlocal variables such that their derivatives contain the Gardner deformation for the classical KdV equation.
REFERENCES
1.
C. S.
Gardner
, “Korteweg–de Vries equation and generalizations. I. A remarkable nonlinear substitution
,” J. Math. Phys.
9
, 1202
–1204
(1968
).2.
P.
Labelle
and P.
Mathieu
, “A new supersymmetric Korteweg–de Vries equation
,” J. Math. Phys.
32
(4
), 923
–927
(1991
).3.
P.
Mathieu
, “Open problems for the super KdV equations
,” in Bäcklund and Darboux Transformations. The Geometry of Solitons
, CRM Proceedings and Lecture Notes
Vol. 29
, edited by A.
Coley
, D.
Levi
, R.
Milson
, C.
Rogers
, and P.
Winternitz
(AMS
, 2001
), pp. 325
–334
;e-print arXiv:math-ph/0005007.
4.
V.
Hussin
, A. V.
Kiselev
, A. O.
Krutov
, and T.
Wolf
, “N = 2 supersymmetrica = 4-Korteweg–de Vries hierarchy derived via Gardner's deformation of Kaup–Boussinesq equation
,” J. Math. Phys.
51
(8
), 083507
(2010
);e-print arXiv:0911.2681 [nlin.SI].
5.
I. M.
Gelfand
and L. A.
Dikiĭ
, “Asymptotic properties of the resolvent of Sturm-Liouville equations, and the algebra of Korteweg-de Vries equations
,” Russ. Math. Surveys
30
(5
), 77
–113
(1975
).6.
G.
Wilson
, “On two constructions of conservation laws for Lax equations
,” Q. J. Math. Oxford Ser.
32
(128
), 491
–512
(1981
).7.
M.
Roelofs
, “Prolongation structures of supersymmetric systems
,” Ph.D. dissertation (University of Twente
, 1993
).8.
I. S.
Krasil'shchik
and P. H. M.
Kersten
, Symmetries and Recursion Operators for Classical and Supersymmetric Differential Equations
(Kluwer
, Dordrecht
, 2000
).9.
A. V.
Kiselev
, “Algebraic properties of Gardner's deformations for integrable systems
,” Theor. Math. Phys.
152
(1
), 963
–976
(2007
);e-print arXiv:nlin.SI/0610072.
10.
M.
Marvan
, “On the horizontal gauge cohomology and non-removability of the spectral parameter
,” Acta Appl. Math.
72
, 51
–65
(2002
).11.
T.
Miva
, M.
Jimbo
, and E.
Date
, Solitons: Differential Equations, Symmetries and Infinite Dimensional Algebras
(Cambridge University Press
, Cambridge
, 2000
).12.
A. V.
Bocharov
, A. M.
Verbovetsky
, A. M.
Vinogradov
et al., in Symmetries and Conservation Laws for Differential Equations of Mathematical Physics
, edited by I. S.
Krasil'shchik
and A. M.
Vinogradov
(AMS
, Providence, RI
, 1999
).13.
A. V.
Kiselev
, “The twelve lectures in the (non)commutative geometry of differential equations
,” preprint IHÉS/M/12/13, (2012
), p. 140
.14.
F. A.
Berezin
, “Introduction to superanalysis
,” Mathematical Physics and Applied Mathematics
(Reidel
, Dordrecht/Boston, MA
, 1987
), Vol. 9.15.
L. D.
Faddeev
, and L. A.
Takhtajan
, Hamiltonian Methods in the Theory of Solitons
(Springer-Verlag
, Berlin
, 1987
).16.
Bäcklund (auto)transformations between PDE appear in the same context. In Ref. 9 we argued that the former, when regarded as the diagrams, are dual to the diagram description of Gardner's deformations.
17.
V. E.
Zakharov
, and A. B.
Shabat
, “Integration of nonlinear equations of mathematical physics by the method of inverse scattering. II
,” Funct. Anal. Appl.
13
(3
), 166
–174
(1979
).18.
M.
Marvan
, “A direct procedure to compute zero-curvature representations. The case
,” in $\mathfrak {sl}_2$
Proceedings of a Conference on Secondary Calculus and Cohomological Physics, Moscow, 24–31 August, 1997
(Diffiety Institute of the Russian Academy of Natural Sciences
, Moscow
, 1997
), p. 9
; see http://www.emis.de/proceedings/SCCP97 for ELibEMS.19.
D. A.
Leites
, “Lie superalgebras
,” J. Math. Sci.
30
(6
), 2481
–2512
(1985
).20.
Yu. I.
Manin
, “Holomorphic supergeometry and Yang–Mills superfields
,” J. Math. Sci.
30
(2
), 1927
–1975
(1985
).21.
L.
Frappat
, P.
Sorba
, and A.
Sciarrino
, “Dictionary on Lie superalgebras
,” preprint arXiv:hep-th/9607161 (1996
), p. 146
.22.
D. A.
Leites
, “Introduction to the theory of supermanifolds
,” Russ. Math. Surveys
35
(1
), 1
–64
(1980
).23.
P.
Mathieu
, “Supersymmetric extension of the Korteweg–de Vries equation
,” J. Math. Phys.
29
(11
), 2499
–2506
(1988
).24.
A. V.
Kiselev
and V.
Hussin
, “Hirota's virtual multisoliton solutions ofN = 2 supersymmetric Korteweg–de Vries equations
,” Theor. Math. Phys.
159
(3
), 832
–840
(2009
);e-print arXiv:0810.0930 [nlin.SI].
25.
A.
Das
, W.-J.
Huang
, and S.
Roy
, “Zero curvature condition of
,” $\mathfrak {osp}(2/2)$
and the associated supergravity theoryInt. J. Mod. Phys.
18
, 4293
–4311
(1992
).26.
S.
Andrea
, A.
Restuccia
, and A.
Sotomayor
, “The Gardner category and nonlocal conservation laws for N = 1 super KdV
,” J. Math. Phys.
46
, 103517
(2005
).© 2012 American Institute of Physics.
2012
American Institute of Physics
You do not currently have access to this content.