Lions, Temam, and Wang in [“Problème à frontière libre pour les modèles couplés de l'océan et de l'atmosphère,” Acad. Sci., Paris, C. R.318(12), 11651171 (1994)] introduced a free surface model for the primitive equations of the ocean. In this paper, we establish the local well-posedness of the model with analytic initial data.

1.
C.
Bardos
,
U.
Frisch
,
W.
Pauls
,
S.
Ray
, and
E. S.
Titi
, “
Entire solutions of hydrodynamical equations with exponential dissipation
,”
Comm. Math. Phys.
293
(
2
),
519
543
(
2010
).
2.
D.
Bresch
,
F.
Guillén-González
,
N.
Masmoudi
, and
M. A.
Rodríguez-Bellido
, “
Asymptotic derivation of a Navier condition for the primitive equations
,”
Asymptotic Anal.
33
(
3-4
),
237
259
(
2003
).
3.
D.
Bresch
,
F.
Guillén-González
,
N.
Masmoudi
, and
M. A.
Rodríguez-Bellido
, “
On the uniqueness of weak solutions of the two-dimensional primitive equations
,”
Diff. Integral Eq.
16
(
1
),
77
94
(
2003
).
4.
C.
Cao
and
E. S.
Titi
, “
Global well-posedness of the three-dimensional viscous primitive equations of large scale ocean and atmosphere dynamics
,”
Ann. Math.
166
(
1
),
245
267
(
2007
).
5.
Q.
Chen
,
R.
Temam
, and
J. J.
Tribbia
, “
Simulations of the 2.5D inviscid primitive equations in a limited domain
,”
J. Comput. Phys.
227
(
23
),
9865
9884
(
2008
).
6.
A. B.
Ferrari
and
E. S.
Titi
, “
Gevrey regularity for nonlinear analytic parabolic equations
,”
Commun. Partial Differ. Eq.
23
(
1-2
),
1
16
(
1998
).
7.
C.
Foias
and
R.
Temam
, “
Gevrey class regularity for the solutions of the Navier-Stokes equations
,”
J. Funct. Anal.
87
(
2
),
359
369
(
1989
).
8.
F.
Guillén-González
,
N.
Masmoudi
, and
M. A.
Rodríguez-Bellido
, “
Anisotropic estimates and strong solutions of the primitive equations
,”
Diff. Integral Eq.
14
(
11
),
1381
1408
(
2001
).
9.
N.
Glatt-Holtz
and
R.
Temam
, “
Pathwise solutions of the 2-D stochastic primitive equations
,”
Appl. Math. Optim.
63
,
401
433
(
2011
).
10.
C.
Hu
, “
Finite dimensional behaviors of the primitive equations under small depth assumption
,”
Numer. Funct. Anal. Optim.
28
,
853
882
(
2007
).
11.
C.
Hu
,
R.
Temam
, and
M.
Ziane
, “
The primitive equations on the large scale ocean under the small depth hypothesis
,”
Discrete Contin. Dyn. Syst.
9
(
1
),
97
131
(
2003
).
12.
C.
Hu
,
R.
Temam
, and
M.
Ziane
, “
Regularity results for linear elliptic problems related to the primitive equations [mr1924143]
,” in
Frontiers in Mathematical Analysis and Numerical Methods
(
World Scientific
,
River Edge, NJ
,
2004
), pp.
149
170
.
13.
G. M.
Kobelkov
, “
Existence of a solution ‘in the large’ for the 3D large-scale ocean dynamics equations
,”
C. R. Math. Acad. Sci. Paris
343
(
4
),
283
286
(
2006
).
14.
I.
Kukavica
,
R.
Temam
,
V. C.
Vicol
, and
M.
Ziane
, “
Existence and uniqueness of solutions for the hydrostatic Euler equations on a bounded domain with analytic data
,”
C. R. Math. Acad. Sci. Paris
348
(
11-12
),
639
645
(
2010
).
15.
I.
Kukavica
,
R.
Temam
,
V. C.
Vicol
, and
M.
Ziane
, “
Local existence and uniqueness for the hydrostatic Euler equations on a bounded domain
,”
J. Differ. Equations
250
(
3
),
1719
1746
(
2011
).
16.
I.
Kukavica
and
V.
Vicol
, “
On the radius of analyticity of solutions to the three-dimensional Euler equations
,”
Proc. Am. Math. Soc.
137
(
2
),
669
677
(
2009
).
17.
I.
Kukavica
and
M.
Ziane
, “
On the regularity of the primitive equations of the ocean
,”
Nonlinearity
20
(
12
),
2739
2753
(
2007
).
18.
I.
Kukavica
and
M.
Ziane
, “
Uniform gradient bounds for the primitive equations of the ocean
,”
Diff. Integral Eq.
21
(
9-10
),
837
849
(
2008
).
19.
C. D.
Levermore
and
M.
Oliver
, “
Analyticity of solutions for a generalized Euler equation
,”
J. Differ. Equations
133
(
2
),
321
339
(
1997
).
20.
J.-L.
Lions
,
R.
Temam
, and
S. H.
Wang
, “
New formulations of the primitive equations of atmosphere and applications
,”
Nonlinearity
5
(
2
),
237
288
(
1992
).
21.
J.-L.
Lions
,
R.
Temam
, and
S. H.
Wang
, “
On the equations of the large-scale ocean
,”
Nonlinearity
5
(
5
),
1007
1053
(
1992
).
22.
J.-L.
Lions
,
R.
Temam
, and
S. H.
Wang
, “
Problème à frontière libre pour les modèles couplés de l'océan et de l'atmosphère
,”
C. R. Math. Acad. Sci. Paris Sér. I Math.
318
(
12
),
1165
1171
(
1994
).
23.
J.-L.
Lions
,
R.
Temam
, and
S. H.
Wang
, “
Mathematical theory for the coupled atmosphere-ocean models. (CAO III)
,”
J. Math. Pures Appl.
74
(
2
),
105
163
(
1995
).
24.
T. T.
Medjo
, “
Optimal control of the primitive equations of the ocean with state constraints
,”
Nonlinear Analysis Theory, Methods Appl.
73
,
634
649
(
2010
).
25.
J.
Pedlosky
,
Geophysical Fluid Dynamics
, 2nd ed., (
Springer-Verlag
,
New York
,
1987
).
26.
M.
Petcu
, “
On the three-dimensional primitive equations
,”
Adv. Differ. Equ.
11
,
1201
1226
(
2006
).
27.
M.
Petcu
,
R. M.
Temam
, and
M.
Ziane
,
Some mathematical problems in geophysical fluid dynamics
,
Handbook of Numerical Analysis Vol. XIV, Special volume: Computational methods for the atmosphere and the oceans
(
Elsevier/North-Holland
,
Amsterdam
,
2009
), pp.
577
750
.
28.
M.
Renardy
, “
On hydrostatic free surface problem
,”
J. Math. Fluid Mech.
13
,
89
93
(
2011
).
29.
L. F.
Richardson
,
Weather Prediction by Numerical Process
, 2nd ed.,
Cambridge Mathematical Library
(
Cambridge University Press
,
Cambridge
,
2007
).
30.
A.
Rousseau
,
R.
Temam
, and
J.
Tribbia
, “
The 3D primitive equations in the absence of viscosity: Boundary conditions and well-posedness in the linearized case
,”
J. Math. Pures Appl.
89
(
3
),
297
319
(
2008
).
31.
A.
Rousseau
,
R.
Temam
, and
J.
Tribbia
, “
Boundary conditions for the 2D linearized PEs of the ocean in the absence of viscosity
,”
Discrete Contin. Dyn. Syst.
13
(
5
),
1257
1276
(
2005
).
32.
R.
Salmon
,
Lectures on Geophysical Fluid Dynamics
(
Oxford University Press
,
New York
,
1998
).
33.
R.
Temam
and
M.
Ziane
,
Some mathematical problems in geophysical fluid dynamics
,
Handbook of Mathematical Fluid Dynamics Vol. III
(
North-Holland
,
Amsterdam
,
2004
), pp.
535
657
.
You do not currently have access to this content.