Lions, Temam, and Wang in [“Problème à frontière libre pour les modèles couplés de l'océan et de l'atmosphère,” Acad. Sci., Paris, C. R. 318(12), 1165–1171 (1994)] introduced a free surface model for the primitive equations of the ocean. In this paper, we establish the local well-posedness of the model with analytic initial data.
REFERENCES
1.
C.
Bardos
, U.
Frisch
, W.
Pauls
, S.
Ray
, and E. S.
Titi
, “Entire solutions of hydrodynamical equations with exponential dissipation
,” Comm. Math. Phys.
293
(2
), 519
–543
(2010
).2.
D.
Bresch
, F.
Guillén-González
, N.
Masmoudi
, and M. A.
Rodríguez-Bellido
, “Asymptotic derivation of a Navier condition for the primitive equations
,” Asymptotic Anal.
33
(3-4
), 237
–259
(2003
).3.
D.
Bresch
, F.
Guillén-González
, N.
Masmoudi
, and M. A.
Rodríguez-Bellido
, “On the uniqueness of weak solutions of the two-dimensional primitive equations
,” Diff. Integral Eq.
16
(1
), 77
–94
(2003
).4.
C.
Cao
and E. S.
Titi
, “Global well-posedness of the three-dimensional viscous primitive equations of large scale ocean and atmosphere dynamics
,” Ann. Math.
166
(1
), 245
–267
(2007
).5.
Q.
Chen
, R.
Temam
, and J. J.
Tribbia
, “Simulations of the 2.5D inviscid primitive equations in a limited domain
,” J. Comput. Phys.
227
(23
), 9865
–9884
(2008
).6.
A. B.
Ferrari
and E. S.
Titi
, “Gevrey regularity for nonlinear analytic parabolic equations
,” Commun. Partial Differ. Eq.
23
(1-2
), 1
–16
(1998
).7.
C.
Foias
and R.
Temam
, “Gevrey class regularity for the solutions of the Navier-Stokes equations
,” J. Funct. Anal.
87
(2
), 359
–369
(1989
).8.
F.
Guillén-González
, N.
Masmoudi
, and M. A.
Rodríguez-Bellido
, “Anisotropic estimates and strong solutions of the primitive equations
,” Diff. Integral Eq.
14
(11
), 1381
–1408
(2001
).9.
N.
Glatt-Holtz
and R.
Temam
, “Pathwise solutions of the 2-D stochastic primitive equations
,” Appl. Math. Optim.
63
, 401
–433
(2011
).10.
C.
Hu
, “Finite dimensional behaviors of the primitive equations under small depth assumption
,” Numer. Funct. Anal. Optim.
28
, 853
–882
(2007
).11.
C.
Hu
, R.
Temam
, and M.
Ziane
, “The primitive equations on the large scale ocean under the small depth hypothesis
,” Discrete Contin. Dyn. Syst.
9
(1
), 97
–131
(2003
).12.
C.
Hu
, R.
Temam
, and M.
Ziane
, “Regularity results for linear elliptic problems related to the primitive equations [mr1924143]
,” in Frontiers in Mathematical Analysis and Numerical Methods
(World Scientific
, River Edge, NJ
, 2004
), pp. 149
–170
.13.
G. M.
Kobelkov
, “Existence of a solution ‘in the large’ for the 3D large-scale ocean dynamics equations
,” C. R. Math. Acad. Sci. Paris
343
(4
), 283
–286
(2006
).14.
I.
Kukavica
, R.
Temam
, V. C.
Vicol
, and M.
Ziane
, “Existence and uniqueness of solutions for the hydrostatic Euler equations on a bounded domain with analytic data
,” C. R. Math. Acad. Sci. Paris
348
(11-12
), 639
–645
(2010
).15.
I.
Kukavica
, R.
Temam
, V. C.
Vicol
, and M.
Ziane
, “Local existence and uniqueness for the hydrostatic Euler equations on a bounded domain
,” J. Differ. Equations
250
(3
), 1719
–1746
(2011
).16.
I.
Kukavica
and V.
Vicol
, “On the radius of analyticity of solutions to the three-dimensional Euler equations
,” Proc. Am. Math. Soc.
137
(2
), 669
–677
(2009
).17.
I.
Kukavica
and M.
Ziane
, “On the regularity of the primitive equations of the ocean
,” Nonlinearity
20
(12
), 2739
–2753
(2007
).18.
I.
Kukavica
and M.
Ziane
, “Uniform gradient bounds for the primitive equations of the ocean
,” Diff. Integral Eq.
21
(9-10
), 837
–849
(2008
).19.
C. D.
Levermore
and M.
Oliver
, “Analyticity of solutions for a generalized Euler equation
,” J. Differ. Equations
133
(2
), 321
–339
(1997
).20.
J.-L.
Lions
, R.
Temam
, and S. H.
Wang
, “New formulations of the primitive equations of atmosphere and applications
,” Nonlinearity
5
(2
), 237
–288
(1992
).21.
J.-L.
Lions
, R.
Temam
, and S. H.
Wang
, “On the equations of the large-scale ocean
,” Nonlinearity
5
(5
), 1007
–1053
(1992
).22.
J.-L.
Lions
, R.
Temam
, and S. H.
Wang
, “Problème à frontière libre pour les modèles couplés de l'océan et de l'atmosphère
,” C. R. Math. Acad. Sci. Paris Sér. I Math.
318
(12
), 1165
–1171
(1994
).23.
J.-L.
Lions
, R.
Temam
, and S. H.
Wang
, “Mathematical theory for the coupled atmosphere-ocean models. (CAO III)
,” J. Math. Pures Appl.
74
(2
), 105
–163
(1995
).24.
T. T.
Medjo
, “Optimal control of the primitive equations of the ocean with state constraints
,” Nonlinear Analysis Theory, Methods Appl.
73
, 634
–649
(2010
).25.
J.
Pedlosky
, Geophysical Fluid Dynamics
, 2nd ed., (Springer-Verlag
, New York
, 1987
).26.
M.
Petcu
, “On the three-dimensional primitive equations
,” Adv. Differ. Equ.
11
, 1201
–1226
(2006
).27.
M.
Petcu
, R. M.
Temam
, and M.
Ziane
, Some mathematical problems in geophysical fluid dynamics
, Handbook of Numerical Analysis Vol. XIV, Special volume: Computational methods for the atmosphere and the oceans
(Elsevier/North-Holland
, Amsterdam
, 2009
), pp. 577
–750
.28.
M.
Renardy
, “On hydrostatic free surface problem
,” J. Math. Fluid Mech.
13
, 89
–93
(2011
).29.
L. F.
Richardson
, Weather Prediction by Numerical Process
, 2nd ed., Cambridge Mathematical Library
(Cambridge University Press
, Cambridge
, 2007
).30.
A.
Rousseau
, R.
Temam
, and J.
Tribbia
, “The 3D primitive equations in the absence of viscosity: Boundary conditions and well-posedness in the linearized case
,” J. Math. Pures Appl.
89
(3
), 297
–319
(2008
).31.
A.
Rousseau
, R.
Temam
, and J.
Tribbia
, “Boundary conditions for the 2D linearized PEs of the ocean in the absence of viscosity
,” Discrete Contin. Dyn. Syst.
13
(5
), 1257
–1276
(2005
).32.
R.
Salmon
, Lectures on Geophysical Fluid Dynamics
(Oxford University Press
, New York
, 1998
).33.
R.
Temam
and M.
Ziane
, Some mathematical problems in geophysical fluid dynamics
, Handbook of Mathematical Fluid Dynamics Vol. III
(North-Holland
, Amsterdam
, 2004
), pp. 535
–657
.© 2012 American Institute of Physics.
2012
American Institute of Physics
You do not currently have access to this content.