We study a curve of Gibbsian families of complex 3 × 3-matrices and point out new features, absent in commutative finite-dimensional algebras: a discontinuous maximum-entropy inference, a discontinuous entropy distance, and non-exposed faces of the mean value set. We analyze these problems from various aspects including convex geometry, topology, and information geometry. This research is motivated by a theory of infomax principles, where we contribute by computing first order optimality conditions of the entropy distance.

1.
E. M.
Alfsen
and
F. W.
Shultz
,
State Spaces of Operator Algebras
(
Birkhäuser
,
Boston
,
2001
).
2.
S.
Amari
, “
Information geometry on hierarchy of probability distributions
,”
IEEE Trans. Inf. Theory
47
,
1701
1711
(
2001
).
3.
S.
Amari
and
H.
Nagaoka
,
Methods of Information Geometry
,
Translations of Mathematical Monographs
Vol.
191
(
American Mathematical Society
,
Providence
,
2000
).
4.
K. M. R.
Audenaert
,
M.
Nussbaum
,
A.
Szkoła
, and
F.
Verstraete
, “
Asymptotic error rates in quantum hypothesis testing
,”
Commun. Math. Phys.
279
,
251
283
(
2008
).
5.
N.
Ay
, “
An information-geometric approach to a theory of pragmatic structuring
,”
Ann. Probab.
30
,
416
436
(
2002
).
6.
N.
Ay
and
A.
Knauf
, “
Maximizing multi-information
,”
Kybernetika
42
,
517
538
(
2006
).
7.
N.
Ay
,
E.
Olbrich
,
N.
Bertschinger
, and
J.
Jost
, “
A geometric approach to complexity
,”
Chaos
21
,
037103
(
2011
).
8.
Barndorff-Nielsen
,
O.
,
Information and Exponential Families in Statistical Theory
(
Wiley
,
New York
,
1978
).
9.
Baumgratz
,
T.
,
Gross
,
D.
,
Cramer
,
M.
, and
Plenio
,
M. B.
, “
Scalable reconstruction of density matrices
,” e-print arXiv:1207.0358 [quant-ph].
10.
Bengtsson
,
I.
,
Weis
,
S.
, and
Życzkowski
,
K.
, “
Geometry of the set of mixed quantum states: An apophatic approach
,” in Proceedings of the XXX Workshop on Geometric Methods in Physics, Białowieża, 26.06–02.07.2011 (in press).
11.
Bjelaković
,
I.
and
Szkoła
,
A.
, “
The data compression theorem for ergodic quantum information sources
,”
Quantum. Inf. Process.
4
,
49
63
(
2005
).
12.
A.
Caticha
,
Entropic Inference and the Foundations of Physics
,
Brazilian Chapter of the International Society for Bayesian Analysis-ISBrA
,
Sao Paulo, Brazil
(
2012
).
13.
Csiszár
,
I.
and
Matúš
,
F.
, “
Information projections revisited
,”
IEEE Trans. Inf. Theory
49
,
1474
1490
(
2003
).
14.
Davidson
,
K. R.
,
C*-Algebras by Example
(
American Mathematical Society
,
Providence
,
1996
).
15.
Ellis
,
R.
,
Entropy, Large Deviations, and Statistical Mechanics
,
Classics in Mathematics
(
Springer
,
2006
).
16.
Erb
,
I.
and
Ay
,
N.
, “
Multi-information in the thermodynamic limit
,”
J. Stat. Phys.
115
,
949
976
(
2004
).
17.
Grünbaum
,
B.
,
Convex Polytopes
, 2nd ed. (
Springer-Verlag
,
New York
,
2003
).
18.
Heinosaari
,
T.
,
Mazzarella
,
L.
, and
Wolf
,
M. M.
, “
Quantum tomography under prior information
,” e-print arXiv:1109.5478 [quant-ph].
19.
R.
Horodecki
,
P.
Horodecki
,
M.
Horodecki
, and
K.
Horodecki
, “
Quantum entanglement
,”
Rev. Mod. Phys.
81
,
865
942
(
2009
).
20.
Ingarden
,
R. S.
,
Kossakowski
,
A.
, and
Ohya
,
M.
,
Information Dynamics and Open Systems
(
Kluwer
,
Dordrecht
,
1997
).
21.
Jaynes
,
E. T.
, “
Information theory and statistical mechanics I/II
,”
Phys. Rev.
106
,
620
630
;
Jaynes
,
E. T.
,
Phys. Rev.
108
,
171
190
(
1957
).
22.
Kojima
,
M.
,
Kojima
,
S.
, and
Hara
,
S.
, “
Linear algebra for semidefinite programming
,”
Sūrikaisekikenkyūsho Kōkyūroku
1004
,
1
23
(
1997
).
23.
Kuperberg
,
G.
, “
The capacity of hybrid quantum memory
,”
IEEE Trans. Inf. Theory
49
,
1465
1473
(
2003
).
24.
Lieb
,
E. H.
, “
Convex trace functions and the Wigner-Yanase-Dyson conjecture
,”
Adv. Math.
11
,
267
288
(
1973
).
25.
Matsuda
,
H.
,
Kudo
,
K.
,
Kiyoshi
,
N.
,
Nakamura
,
R.
,
Yamakawa
,
O.
, and
Murata
,
T.
, “
Mutual information of Ising systems
,”
Int. J. Theor. Phys.
35
,
839
845
(
1996
).
26.
Matúš
,
F.
, “
Optimality conditions for maximizers of the information divergence from an exponential family
,”
Kybernetika
43
,
731
746
(
2007
).
27.
Matúš
,
F.
and
Rauh
,
J.
, “
Maximization of the information divergence from an exponential family and criticality
,” in
Proceedings of IEEE International Symposium on Information Theory
(July 31–Aug. 5,
2011
).
28.
Netzer
,
T.
, “
Spectrahedra and their shadows
,” Habilitationsschrift, Universität Leipzig (
2011
).
29.
Nussbaum
,
M.
and
Szkoła
,
A.
, “
An assymptotic error bound for testing multiple quantum hypothesis
,”
Ann. Stat.
39
,
3211
3233
(
2011
).
30.
Petz
,
D.
, “
Geometry of canonical correlation on the state space of a quantum system
,”
J. Math. Phys.
35
,
780
795
(
1994
).
31.
Petz
,
D.
, “
Monotone metrics on matrix spaces
,”
Linear Algebr. Appl.
244
,
81
96
(
1996
).
32.
Petz
,
D.
,
Quantum Information Theory and Quantum Statistics
,
Theoretical and Mathematical Physics
(
Springer-Verlag
,
Berlin
,
2008
).
33.
Petz
,
D.
and
Ruppert
,
L.
, “
Efficient quantum tomography needs complementary and symmetric measurements
,”
Rep. Math. Phys.
69
,
161
177
(
2012
).
34.
Rau
,
J.
, “
Inferring the Gibbs state of a small quantum system
,”
Phys. Rev. A
84
,
012101
(
2011
).
35.
Rauh
,
J.
, “
Finding the maximizers of the information divergence from an exponential family
,”
IEEE Trans. Inf. Theory
57
,
3236
3247
(
2011
).
36.
Rockafellar
,
R. T.
,
Convex Analysis
(
Princeton University Press
,
Princeton
,
1970
).
37.
Ruskai
,
M. B.
, “
Extremal properties of relative entropy in quantum statistical mechanics
,”
Rep. Math. Phys.
26
,
143
150
(
1988
).
38.
Schumacher
,
B.
, “
Quantum coding
,”
Phys. Rev. A
51
,
2738
2747
(
1995
).
39.
Shannon
,
C. E.
, “
A mathematical theory of communication
,”
Bell Syst. Tech. J.
27
,
379
423
(
1948
).
40.
Vedral
,
V.
,
Plenio
,
M. B.
,
Rippin
,
M. A.
, and
Knight
,
P. L.
, “
Quantifying entanglement
,”
Phys. Rev. Lett.
78
,
2275
2279
(
1997
).
41.
Wehrl
,
A.
, “
General properties of entropy
,”
Rev. Mod. Phys.
50
,
221
260
(
1978
).
42.
Weis
,
S.
, “
A note on touching cones and faces
,”
J. Convex Anal.
19
,
323
353
(
2012
).
43.
Weis
,
S.
, “
Quantum convex support
,”
Linear. Algebr. Appl.
435
,
3168
3188
(
2011
).
44.
Weis
,
S.
, “
Duality of non-exposed faces
,”
J. Convex Anal.
19
,
815
835
(
2012
).
45.
Wichmann
,
E. H.
, “
Density matrices arising from incomplete measurements
,”
J. Math. Phys.
4
,
884
896
(
1963
).
46.
Wootters
,
W. K.
and
Fields
,
B. D.
, “
Optimal state-discrimination by mutually unbiased measurements
,”
Ann. Phys.
191
,
363
381
(
1989
).
You do not currently have access to this content.