We deal with some matters needed to construct concrete left Hopf algebras for inhomogeneous quantum groups produced as noncommutative symmetries of fermionic and bosonic creation/annihilation operators. We find a map for the bidimensional fermionic case, produced as in Manin's [Quantum Groups and Non-commutative Hopf Geometry (CRM Univ. de Montréal, 1988)] seminal work, named preantipode that fulfills all the necessary requirements to be left but not right on the generators of the algebra. Due to the complexity and importance of the full task, we consider our result as an important step that will be extended in the near future.
REFERENCES
1.
Y. I.
Manin
, Quantum Groups and Non-commutative Hopf Geometry
(CRM Univ. de Montréal
, 1988
).2.
S.
Rodríguez-Romo
and E.
Taft
, “One-sided Hopf algebras. Algebraic structures and their representation, XV Coloquio Latinoamericano de álgebra, Coyococ, Morelos, México
,” Contemp. Math.
376
, 377
–384
(2005
).3.
S.
Rodríguez-Romo
and E.
Taft
, “A left quantum group
,” J. Algebra
286
, 154
–160
(2005
).4.
A.
Lauve
and E. J.
Taft
, “A class of left quantum groups modeled after SLq(n)
,” J. Pure Appl. Algebra
208
, 797
–803
(2007
).5.
S.
Rodriguez-Romo
and E.
Taft
, “Some quantum-like Hopf algebras which remain noncommutative when q = 1
,” Lett. Math. Phys.
61
, 41
–50
(2002
).6.
S. L.
Woronowicz
, “Compact matrix pseudogroups
,” Commun. Math. Phys.
111
, 613
–665
(1987
).7.
D.
Kreimer
, “On the Hopf algebra structure of perturbative quantum field theories
,” Adv. Theor. Math. Phys.
2
, 303
–334
(1998
).8.
A.
Connes
and D.
Kreimer
, “Hopf algebras, renormalization and noncommutative geometry
,” Commun. Math. Phys.
199
, 203
–242
(1998
).9.
M.
Arik
and A.
Baykal
, “Inhomogeneous quantum groups for particle algebras
,” J. Math. Phys.
45
, 4207
(2004
).10.
J. A.
Green
, W. D.
Nichols
, and E. J.
Taft
, “Left Hopf-algebras
,” J. Algebra
65
, 399
–411
(1980
).11.
N.
Jacobson
, “Some remarks on one-sided inverses
,” Proc. Am. Math. Soc.
1
, 352
–355
(1950
).12.
W. D.
Nichols
and E. J.
Taft
, “The left antipode of a left Hopf algebra
,” Contemp. Math.
13
, 399
–411
(1980
).13.
G. M.
Bergmant
, “The diamond lemma of ring theory
,” Adv. Math.
29
, 178
–218
(1978
).14.
W. D.
Nichols
and E. J.
Taft
, “The left antipodes of a left Hopf algebra
,” Contemp. Math.
13
, 363
–368
(1982
).15.
S.
Rodríguez-Romo
“Minimal subcoideals and multiparameter deformations
,” Adv. Appl. Math.
33
, 146
–157
(2004
).16.
A.
Tanasa
, “Combinatorial Hopf algebras in (noncommutative) quantum field theory
,” Rom. J. Phys.
55
, 1142
–1155
(2010
).17.
K.
Kremnizer
and M.
Szczesny
, “Feynman graphs, rooted trees, and Ringel-Hall algebras
,” Commun. Math. Phys.
289
, 561
–577
(2009
).18.
K.
Ebrahimi-Fard
, J. M.
Gracia-Bonda
, and F.
Patras
, “A lie theoretic approach to renormalization
,” Commun. Math. Phys.
276
, 519
–549
(2007
).19.
C. J. M.
Mathy
and F. A.
Bais
, “Nematic phases and the breaking of double symmetries
,” Ann. Phys.
322
, 709
–735
(2007
).20.
A. F.
Bais
, B. J.
Schroers
, and J. K.
Slingerland
, “Hopf symmetry breaking and confinement in (2+1)-dimensional gauge theory
,” J. High Energy Phys.
5
, 068
(2003
).21.
A.
Chervov
, G.
Falqui
, and V.
Rubtsov
, “Algebraic properties of Manin matrices 1
,” Adv. Appl Math.
43
, 239
–315
(2009
).22.
D.
Foata
and G. N.
Han
, “A basic for the right quantum algebra and the “1 = q” principle
,” J. Algebr. Comb.
27
, 163
–172
(2008
).© 2012 American Institute of Physics.
2012
American Institute of Physics
You do not currently have access to this content.