We deal with some matters needed to construct concrete left Hopf algebras for inhomogeneous quantum groups produced as noncommutative symmetries of fermionic and bosonic creation/annihilation operators. We find a map for the bidimensional fermionic case, produced as in Manin's [Quantum Groups and Non-commutative Hopf Geometry (CRM Univ. de Montréal, 1988)] seminal work, named preantipode that fulfills all the necessary requirements to be left but not right on the generators of the algebra. Due to the complexity and importance of the full task, we consider our result as an important step that will be extended in the near future.

1.
Y. I.
Manin
,
Quantum Groups and Non-commutative Hopf Geometry
(
CRM Univ. de Montréal
,
1988
).
2.
S.
Rodríguez-Romo
and
E.
Taft
, “
One-sided Hopf algebras. Algebraic structures and their representation, XV Coloquio Latinoamericano de álgebra, Coyococ, Morelos, México
,”
Contemp. Math.
376
,
377
384
(
2005
).
3.
S.
Rodríguez-Romo
and
E.
Taft
, “
A left quantum group
,”
J. Algebra
286
,
154
160
(
2005
).
4.
A.
Lauve
and
E. J.
Taft
, “
A class of left quantum groups modeled after SLq(n)
,”
J. Pure Appl. Algebra
208
,
797
803
(
2007
).
5.
S.
Rodriguez-Romo
and
E.
Taft
, “
Some quantum-like Hopf algebras which remain noncommutative when q = 1
,”
Lett. Math. Phys.
61
,
41
50
(
2002
).
6.
S. L.
Woronowicz
, “
Compact matrix pseudogroups
,”
Commun. Math. Phys.
111
,
613
665
(
1987
).
7.
D.
Kreimer
, “
On the Hopf algebra structure of perturbative quantum field theories
,”
Adv. Theor. Math. Phys.
2
,
303
334
(
1998
).
8.
A.
Connes
and
D.
Kreimer
, “
Hopf algebras, renormalization and noncommutative geometry
,”
Commun. Math. Phys.
199
,
203
242
(
1998
).
9.
M.
Arik
and
A.
Baykal
, “
Inhomogeneous quantum groups for particle algebras
,”
J. Math. Phys.
45
,
4207
(
2004
).
10.
J. A.
Green
,
W. D.
Nichols
, and
E. J.
Taft
, “
Left Hopf-algebras
,”
J. Algebra
65
,
399
411
(
1980
).
11.
N.
Jacobson
, “
Some remarks on one-sided inverses
,”
Proc. Am. Math. Soc.
1
,
352
355
(
1950
).
12.
W. D.
Nichols
and
E. J.
Taft
, “
The left antipode of a left Hopf algebra
,”
Contemp. Math.
13
,
399
411
(
1980
).
13.
G. M.
Bergmant
, “
The diamond lemma of ring theory
,”
Adv. Math.
29
,
178
218
(
1978
).
14.
W. D.
Nichols
and
E. J.
Taft
, “
The left antipodes of a left Hopf algebra
,”
Contemp. Math.
13
,
363
368
(
1982
).
15.
S.
Rodríguez-Romo
Minimal subcoideals and multiparameter deformations
,”
Adv. Appl. Math.
33
,
146
157
(
2004
).
16.
A.
Tanasa
, “
Combinatorial Hopf algebras in (noncommutative) quantum field theory
,”
Rom. J. Phys.
55
,
1142
1155
(
2010
).
17.
K.
Kremnizer
and
M.
Szczesny
, “
Feynman graphs, rooted trees, and Ringel-Hall algebras
,”
Commun. Math. Phys.
289
,
561
577
(
2009
).
18.
K.
Ebrahimi-Fard
,
J. M.
Gracia-Bonda
, and
F.
Patras
, “
A lie theoretic approach to renormalization
,”
Commun. Math. Phys.
276
,
519
549
(
2007
).
19.
C. J. M.
Mathy
and
F. A.
Bais
, “
Nematic phases and the breaking of double symmetries
,”
Ann. Phys.
322
,
709
735
(
2007
).
20.
A. F.
Bais
,
B. J.
Schroers
, and
J. K.
Slingerland
, “
Hopf symmetry breaking and confinement in (2+1)-dimensional gauge theory
,”
J. High Energy Phys.
5
,
068
(
2003
).
21.
A.
Chervov
,
G.
Falqui
, and
V.
Rubtsov
, “
Algebraic properties of Manin matrices 1
,”
Adv. Appl Math.
43
,
239
315
(
2009
).
22.
D.
Foata
and
G. N.
Han
, “
A basic for the right quantum algebra and the “1 = q” principle
,”
J. Algebr. Comb.
27
,
163
172
(
2008
).
You do not currently have access to this content.