In the nonrelativistic setting with finitely many canonical degrees of freedom, a shift-covariant phase space observable is uniquely characterized by a positive operator of trace one and, in turn, by the Fourier-Weyl transform of this operator. We study three properties of such observables, and characterize them in terms of the zero set of this transform. The first is informational completeness, for which it is necessary and sufficient that the zero set has dense complement. The second is a version of informational completeness for the Hilbert-Schmidt class, equivalent to the zero set being of measure zero, and the third, known as regularity, is equivalent to the zero set being empty. We give examples demonstrating that all three conditions are distinct. The three conditions are the special cases for p = 1, 2, ∞ of a more general notion of p-regularity defined as the norm density of the span of translates of the operator in the Schatten-p class. We show that the relation between zero sets and p-regularity can be mapped completely to the corresponding relation for functions in classical harmonic analysis.

1.
J.
Park
and
W.
Band
, “
A general theory of empirical state determination in quantum physics: Part I
,”
Found. Phys.
1
,
211
(
1971
).
2.
Quantum State Estimation
, edited by
M.
Paris
and
J.
Řeháček
(
Springer
,
Berlin
,
2004
).
3.
U.
Leonhardt
,
Measuring the Quantum State of Light
(
Cambridge University Press
,
Cambridge
,
1997
).
4.
G.
Ludwig
, Lectures on quantum mechanics, as heard by
R. F.
Werner
,
1970
.
5.
E.
Prugovečki
, “
Information-theoretical aspects of quantum measurement
,”
Int. J. Theor. Phys.
16
,
321
(
1977
).
6.
F. E.
Schroeck
 Jr.
,
Quantum Mechanics on Phase Space
(
Kluwer Academic
,
Dordrecht
,
1996
).
7.
G. M.
D’Ariano
,
P.
Perinotti
, and
M. F.
Sacchi
, “
Informationally complete measurements and group representation
,”
J. Opt. B: Quantum Semiclassical Opt.
6
,
S487
(
2004
).
8.
S. T.
Ali
and
E.
Prugovečki
, “
Classical and quantum statistical mechanics in a common Liouville space
,”
Physica A
89
,
501
(
1977
).
9.
P.
Busch
and
P.
Lahti
, “
The determination of the past and future of a physical system in quantum mechanics
,”
Found. Phys.
19
,
633
(
1989
).
10.
P.
Busch
,
G.
Cassinelli
, and
P. J.
Lahti
, “
Probability structures for quantum state spaces
,”
Rev. Math. Phys.
7
,
1105
(
1995
).
11.
D. M.
Healy
 Jr.
and
F. E.
Schroeck
 Jr.
, “
On informational completeness of covariant localization observables and Wigner coefficients
,”
J. Math. Phys.
36
,
453
(
1995
).
12.
J. A.
Brooke
and
F. E.
Schroeck
 Jr.
, “
Perspectives: Quantum mechanics on phase space
,”
Int. J. Theor. Phys.
44
,
1889
(
2005
).
13.
A. S.
Holevo
, “
Covariant measurements and uncertainty relations
,”
Rep. Math. Phys.
16
,
385
(
1979
).
14.
R. F.
Werner
, “
Quantum harmonic analysis on phase space
,”
J. Math. Phys.
25
,
1404
(
1984
).
15.
A.
Wünsche
and
V.
Bužek
, “
Reconstruction of quantum state from propensities
,”
Quantum Semiclassic. Opt.
9
,
631
(
1997
).
16.
M.
Reed
and
B.
Simon
,
Methods of Modern Mathematical Physics. II: Fourier Analysis, Self-Adjointness
(
Academic
,
San Diego
,
1975
).
17.
N.
Wiener
, “
Tauberian theorems
,”
Ann. Math.
33
,
1
(
1932
).
18.
H. H.
Schaefer
,
Topological Vector Spaces
(
Springer
,
1971
).
19.
R. E.
Edwards
, “
Spans of translates in Lp(G)
,”
J. Austral. Math. Soc.
5
,
216
(
1965
).
20.
I. E.
Segal
, “
The span of the translations of a function in a Lebesgue space
,”
Proc. Natl. Acad. Sci. U.S.A.
30
,
165
(
1944
).
21.
A.
Beurling
, “
On a closure problem
,”
Ark. Mat.
1
,
301
(
1950
).
22.
C. S.
Herz
, “
A note on the span of translations in Lp
,”
Proc. Am. Math. Soc.
8
,
724
(
1957
).
23.
N.
Lev
and
A.
Olevskii
, “
Wiener's ‘closure of translates’ problem and Piatetski-Shapiro's uniqueness phenomenon
,”
Ann. Math.
174
,
519
(
2011
).
24.
F.
Hausdorff
, “
Dimension und äußeres Maß
,”
Math. Ann.
79
,
157
(
1918
).
25.
J.
Deny
, “
Les potentiels d'energie finie
,”
Acta Math.
82
,
107
(
1950
).
You do not currently have access to this content.