In this paper we focus on the Cauchy problem for a nonlinear wave equation of fourth-order in n-dimensional space (n ⩾ 1), the decay structure of which is of regularity-loss property. Based on the decay estimate of solutions to the linear problem, we introduce a set of time-weighted Sobolev spaces. By using the contraction mapping theorem, we obtain the global in-time existence and the optimal decay estimates of solutions to the Cauchy problem under smallness assumption on the initial data.
REFERENCES
1.
Y.-Z.
Wang
, F.-G.
Liu
, and Y.-Z.
Zhuang
, J. Math. Anal. Appl.
385
, 836
(2012
).2.
Y.-Z.
Wang
, Nonlinear Anal.
70
, 465
(2009
).3.
Y.-Z.
Wang
and Y.-X.
Wang
, Nonlinear Anal.
72
, 4500
(2010
).4.
5.
X.-Y.
Chen
and G.-W.
Chen
, Nonlinear Anal.
68
, 892
(2008
).6.
S.-B.
Wang
and G.-W.
Chen
, J. Math. Anal. Appl.
274
, 846
(2002
).7.
G.-W.
Chen
and C.-S.
Hou
, Appl. Math. Mech.
30
, 391
(2009
).8.
G.-W.
Chen
and B.
Lu
, J. Math. Anal. Appl.
351
, 1
(2009
).9.
S.-B.
Wang
and M.-L.
Li
, IMA J. Appl. Math.
74
, 726
(2009
).10.
Z.-J.
Yang
, J. Differ. Equations
242
, 269
(2007
).11.
Y.-Z.
Wang
, J. Math. Phys.
50
, 103506
(2009
).12.
Y.-Z.
Wang
and Y.-X.
Wang
, Appl. Math. Comput.
216
, 576
(2010
).13.
W.-R.
Dai
and D.-X.
Kong
, J. Differ. Equations
235
, 127
(2007
).14.
L.
Hörmander
, Lectures on Nonlinear Hyperbolic Differential Equations
, Mathématique and Applications
Vol. 26
(Spring-Verlag
, Berlin
, 1997
).15.
D.-X.
Kong
and T.
Yang
, Commun. Partial Differ. Equ.
28
, 1203
(2003
).16.
D.-X.
Kong
and Y.-Z.
Wang
, “Long-time behaviour of smooth solutions to the compressible Euler equations with damping in several space variables
,” IMA J. Appl. Math.
(in press).17.
C. D.
Sogge
, Lectures on Nonlinear Wave Equations
, Monographs in Analysis
Vol. 2
(International Press
, Boston
, 1995
).18.
Y.-Q.
Liu
and W.-K.
Wang
, Discrete Contin. Dyn. Syst.
20
, 1013
(2008
).19.
K.
Nishihara
and H.
Zhao
, J. Math. Anal. Appl.
313
, 598
(2006
).20.
K.
Ono
, Discrete Contin. Dyn. Syst.
9
, 651
(2003
).21.
W.-K.
Wang
and W.-J.
Wang
, J. Math. Anal. Appl.
368
, 226
(2010
).22.
23.
R. C.
Charão
, E.
Bisognin
, V.
Bisognin
, and A. F.
Pazoto
, Electron. J. Differ. Equations
46
, 1
(2008
).24.
Z.
Liu
and S.
Zheng
, Semigroups Associated with Dissipative Systems
(Chapman and Hall/CRC
, London
, 1999
).25.
Y.
Sugitani
and S.
Kawashima
, J. Hyperbol. Differ. Equations
7
, 471
(2010
).26.
Y.-Q.
Liu
and S.
Kawashima
, Discrete Contin. Dyn. Syst.
29
, 1113
(2011
).© 2012 American Institute of Physics.
2012
American Institute of Physics
You do not currently have access to this content.