We consider the hypergeometric equation (1 − t)∂ttg + x3g = 0, whose unique analytic solution φ1(t; x) = 1 + O(t) near t = 0 for t = 1 becomes a generating function for multiple zeta values φ1(1; x) = f3(x) = 1 − ζ(3)x3 + ζ(3, 3)x6 − …. We apply the so-called WKB method to study solutions of the hypergeometric equation for large x and we calculate corresponding Stokes matrices. We prove that the function f3(x) near x = ∞ is also expressed via WKB type functions which subject to some Stokes phenomenon. This implies that f3(x) satisfies a sixth order linear differential equation with irregular singularity at infinity.

1.
Aoki
,
T.
,
Ohno
,
Y.
, and
Wakabayashi
,
N.
, “
On generating functions of multiple zeta values and generalized hypergeometric functions
,”
Manuscripta Math.
134
,
139
155
(
2011
).
2.
Apéry
,
R.
, “
Irrationabilité de ζ(2) et ζ(3)
,”
Asterisque
61
,
11
13
(
1979
).
3.
Balser
,
W.
, in
From Divergent Power Series to Analytic Functions
,
Lecture Notes in Mathematics
, Vol.
1582
(
Springer–Verlag
,
Berlin
,
1994
).
4.
Bateman
,
G.
and
Erdelyi
,
A.
,
Higher Transcendental Functions
(
McGraw Hill
,
New York
,
1953
), Vol. 1.
5.
Berk
,
H. L.
,
Nevins
,
W. M.
, and
Robert
,
K. V.
, “
New Stokers' line in WKB theory
,”
J. Math. Phys.
23
,
988
1002
(
1982
).
6.
Beukers
,
F.
,
Bornawell
,
D.
, and
Heckman
,
G.
, “
Siegel normality
,”
Ann. Math.
127
,
279
308
(
1988
).
7.
Beukers
,
F.
and
Heckman
,
G.
, “
Monodromy for the hypergeometric function nFn − 1
,”
Invent. Math.
95
,
325
354
(
1989
).
8.
Beukers
,
F.
and
Peters
,
C. A. M.
, “
A family of K3 surfaces and ζ(3)
,”
J. Reine Angew. Math.
351
,
42
54
(
1984
).
9.
Birkhoff
,
G. D.
, “
On the asymptotic character of the solutions of certain differential equations containing a parameter
,”
Trans. Am. Math. Soc.
9
,
219
230
(
1908
).
10.
Borwein
,
J. M.
,
Bradley
,
D. M.
, and
Broadhurst
,
D. J.
, “
Evaluations of |$\mathit {k-}$|kfold Euler/Zagier sums: A compendium of results for arbitrary 𝓀
,”
Electron. J. Comb.
4
(
2
), Res. Paper 5,
21pp
(
1997
).
11.
Borwein
,
J. M.
,
Bradley
,
D. M.
,
Broadhurst
,
D. J.
, and
Lisoněk
,
P.
, “
Combinatorial aspects of multiple zeta values
,”
Electron. J. Comb.
5
, Res. Paper 38,
12pp
(
1998
).
12.
Cresson
,
J.
,
Fischler
,
S.
, and
Rivoal
,
T.
, “
Séries hypergéométriques multiples et polyzêtas
,”
Bull. Soc. Math. France
136
,
97
145
(
2008
).
13.
Delabaere
,
E.
and
Pham
,
F.
, “
Resurgent methods in semi-classical asymptotics
,”
Ann. Inst. Henri Poincaré. Phys. Théoret.
71
,
1
94
(
1999
).
14.
Duval
,
A.
and
Mitschi
,
C.
, “
Matrices de Stokes et groupe de Galois des équations hypergéométriques confluentes generalizes
,”
Pacific J. Math.
138
,
25
56
(
1989
).
15.
Fedoryuk
,
M. B.
,
Asymptotic Analysis. Linear Ordinary Differential Equations
(
Springer–Verlag
,
Berlin
,
1993
);
Russian:
Asymptotic Methods for Linear Ordinary Differential Equations
(
Nauka
,
Moscow
,
1983
).
16.
Glyutsuk
,
A. A.
, “
Stokes operators via limit monodromy of generic perturbation
,”
J. Dynam. Control Syst.
5
,
101
135
(
1999
).
17.
Heading
,
J. M. A.
,
An Introduction to Phase–Integral Methods
(
Wiley
,
New York
,
1977
).
18.
Katz
,
N. M.
, “
On the calculation of some differential Galois groups
,”
Invent. Math.
87
,
13
61
(
1987
).
19.
Katz
,
N. M.
, in “
Exponential sums and differential equations
,”
Annals of Mathematical Studies
, Vol. 124 (
Princeton University Press
,
Princeton
,
1990
).
20.
Kohno
,
M.
, in “
Global analysis in linear differential equations
,”
Mathematics in Applications
(
Kluwer Academic
,
Dordrecht
,
1999
).
21.
Kontsevich
,
M.
and
Zagier
,
D.
, in “
Periods
,”
Mathematics Unlimited – 2001 and Beyond
(
Springer–Verlag
,
Berlin
,
2001
), pp.
771
808
.
22.
Li
,
Z. -H.
, “
Sum of multiple zeta values of fixed weight, depth and i–height
,”
Math. Zeitschrift
258
,
133
142
(
2008
).
23.
Lian
,
B. H.
and
Yau
,
S. -T.
, “
Arithmetic properties of mirror map and quantum coupling
,”
Commun. Math. Phys.
176
,
163
291
(
1996
).
24.
Meijer
,
C. S.
, “
On the G–functions. I
,”
Indag. Math.
8
,
124
134
(
1946
).
25.
Minh
,
H. N.
,
Petitot
,
M.
, and
van der Hoeven
,
J.
, “
Formal Series and Algebraic Combinatorics, Toronto 98
,”
Discrete Math.
225
,
217
230
(
2000
).
26.
Mitschi
,
C.
, “
Differential Galois groups of confluent generalized hypergeometric equations: an approach using Stokes multipliers
,”
Pacific J. Math.
176
,
365
405
(
1996
).
27.
Ohno
,
Y.
and
Zagier
,
D.
, “
Multiple zeta values of fixed weight, depth and weight
,”
Indag. Math.
12
,
483
487
(
2001
).
28.
van der Poorten
,
A.
, “
A proof that Euler missed... Apéry's proof of the irrationality of ζ(3)
,”
Math. Intell.
1
, No 4,
195
2003
(
1978/79
).
29.
Ramis
,
J. -P.
, “
Séries divergentes et théories asymptotiques
,” Panoramas et Synthesèses, Soc. Math. de France,
1993
.
30.
Schiff
,
L.
,
Quantum Mechanics
, (
McGraw Hill
,
New York
,
1968
).
31.
Wasow
,
W.
,
Asymptotic Expansions for Ordinary Differential Equations
, (
Wiley
,
New York
,
1965
).
32.
Zagier
,
D.
, “
Values of zeta function and their applications
,” in
First European Congress of Mathematicians
,
Progress in Mathematics
Vol.
120
(
Birkhaüser
,
Basel
,
1994
), Vol. 2, pp.
497
512
.
33.
Zakrzewski
,
M.
and
Żołądek
,
H.
, “
Linear differential equations and multiple zeta values. I. Zeta(2)
,”
Fundam. Math.
210
,
207
242
(
2010
).
34.
Zakrzewski
,
M.
and
Żołądek
,
H.
, “
Linear differential equations and multiple zeta values. II. A generalization of the WKB method
,”
J. Math. Anal. Appl.
383
,
55
70
(
2011
).
35.
Zhao
,
J.
, “
On a conjecture of Borwein, Bradley and Broadhurst
,”
J. Reine Angew. Math.
639
,
223
233
(
2010
).
36.
Żołądek
,
H.
, “
The extended monodromy group and Liouvillian first integrals
,”
J. Dynam. Control Syst.
4
,
1
28
(
1998
).
37.
Żołądek
,
H.
, “
Note on multiple zeta–values
,”
Bull. Acad. Ştiinţe Rep. Mold. Matem.
41
,
78
82
(
2003
).
38.
Żołądek
,
H.
,
The Monodromy Group
(
Birkhäuser
,
Basel
,
2006
).
39.
Zudilin
,
V. V.
, “
Arithmetic hypergeometric series
,”
Russian Math. Surveys
66
,
369
420
(
2011
).
40.
The deformation |$\left\lbrace \mathbb {T}_{\kappa }\right\rbrace _{0\le \kappa \le 1}$|Tκ0κ1 can be given explicitly as follows:
0 ⩽ α, β ⩽ 2π. Here the modulus A(α) is a smooth function such that: A(α) = |Pσ| in δ–neighborhood of |$\alpha _{\sigma }=\arg P_{\sigma },$|ασ=argPσ,A(α) = 1 outside 2δ–neighborhood of the critical set {ασ} and A(α) varies between 1 and |Pσ|; in the same way, the modulus B(β) is defined. It is easy that Pκ(α), Qκ(α, β) = [B2/A]κ/2ei(β − α/2) and Rκ(α, β) = [B2A]−κ/2ei(β + α/2) avoid the singular value t−1/3, provided the constant δ is sufficiently small.
You do not currently have access to this content.