We study steady-state magnetic fields in the geometric setting of positive curvature on subdomains of the three-dimensional sphere. By generalizing the Biot-Savart law to an integral operator BS acting on all vector fields, we show that electrodynamics in such a setting behaves rather similarly to Euclidean electrodynamics. For instance, for current J and magnetic field BS(J), we show that Maxwell's equations naturally hold. In all instances, the formulas we give are geometrically meaningful: they are preserved by orientation-preserving isometries of the three-sphere. This article describes several properties of BS: we show it is self-adjoint, bounded, and extends to a compact operator on a Hilbert space. For vector fields that act like currents, we prove the curl operator is a left inverse to BS; thus, the Biot-Savart operator is important in the study of curl eigenvalues, with applications to energy-minimization problems in geometry and physics. We conclude with two examples, which indicate our bounds are typically within an order of magnitude of being sharp.

1.
Arnold
,
V. I.
and
Khesin
,
B. A.
,
Topological Methods in Hydrodynamics
,
Applied Mathematical Sciences
, vol.
125
(
Springer-Verlag
,
New York
,
1998
), MR 1612569 (99b:58002).
2.
Arnold
,
V. I.
, “
The asymptotic Hopf invariant and its applications
,”
Selecta Math. Soviet.
5
(
4
),
327
345
(
1986
), MR 891881 (89m:58053).
3.
Berger
,
M. A.
and
Field
,
G. B.
, “
The topological properties of magnetic helicity
,”
J. Fluid Mech.
147
,
133
148
(
1984
), MR 770136 (87a:76118).
4.
Biot
,
J.-B.
and
Savart
,
F.
, “
Note sur le magnétisme de la pile de Volta
,”
Ann. Chim. Phys.
15
,
222
223
(
1820
).
5.
Cantarella
,
J.
,
DeTurck
,
D.
, and
Gluck
,
H.
, “
The Biot-Savart operator for application to knot theory, fluid dynamics, and plasma physics
,”
J. Math. Phys.
42
(
2
),
876
905
(
2001
), MR 2002e:78002.
6.
Cantarella
,
J.
,
DeTurck
,
D.
, and
Gluck
,
H.
,
Upper Bounds for the Writhing of Knots and the Helicity of Vector Fields
, Knots, braids, and mapping class groups—papers dedicated to Joan S. Birman (New York, 1998), AMS/IP Stud. Adv. Math., vol. 24 (
American Mathematics Society
,
Providence, RI
,
2001
), pp.
1
21
. MR 1873104 (2003j:58018).
7.
Cantarella
,
J.
,
DeTurck
,
D.
, and
Gluck
,
H.
, “
Vector calculus and the topology of domains in 3-space
,”
Am. Math. Monthly
109
(
5
),
409
442
(
2002
), MR 1901496 (2003c:53023).
8.
Cantarella
J.
and
Parsley
,
J.
, “
A new cohomological formula for helicity in
${\mathbb R}^{2k+1}$
R2k+1
reveals the effect of a diffeomorphism on helicity
,”
J. Geom. Phys.
60
(
9
),
1127
1155
(
2010
), MR 2654092.
9.
DeTurck
,
D.
and
Gluck
,
H.
, “
Electrodynamics and the Gauss linking integral on the 3-sphere and in hyperbolic 3-space
,”
J. Math. Phys.
49
(
2
),
023504
35
(
2008
), MR 2392864 (2008m:53183).
10.
DeTurck
,
D.
and
Gluck
,
H.
, Linking, twisting, writhing and helicity on the 3-sphere and in hyperbolic 3-space, http://arxiv.org/abs/1009.3561.
11.
Friedrichs
,
K. O.
, “
Differential forms on Riemannian manifolds
,”
Commun. Pure Appl. Math.
8
,
551
590
(
1955
), MR 0087763 (19,407a).
12.
Griffiths
,
D. J.
,
Introduction to Electrodynamics
, 3rd ed. (
Prentice-Hall
,
Upper Saddle River, NJ
,
1999
).
13.
Hodge
,
W. V. D.
, “
A Dirichlet problem for harmonic functionals, with applications to analytic varieties
,”
Proc. London Math. Soc.
s2–36
(
1
),
257
303
(
1934
).
14.
Hodge
,
W. V. D.
,
The Theory and Applications of Harmonic Integrals
(
Cambridge University Press
,
Cambridge
,
1941
).
15.
Khesin
,
B.
, “
Topological fluid dynamics
,”
Notices Amer. Math. Soc.
52
(
1
),
9
19
(
2005
), MR 2105567 (2005h:37206).
16.
Kodaira
,
K.
, “
Harmonic fields in Riemannian manifolds (generalized potential theory)
,”
Ann. Math. (2)
50
,
587
665
(
1949
), MR 0031148 (11,108e).
17.
Moffatt
,
H. K.
, “
The degree of knottedness of tangled vortex lines
,”
J. Fluid Mech.
35
,
117
129
(
1969
).
18.
Morrey
,
B.
 Jr.
, “
A variational method in the theory of harmonic integrals. II
,”
Amer. J. Math.
78
,
137
170
(
1956
), MR 0087765 (19,408a).
19.
Moffatt H. K. and
Ricca
,
R. L.
, “
Helicity and the Călugăreanu invariant
,”
Proc. R. Soc. London A
439
,
411
429
(
1992
).
20.
Ricca
,
R. L.
and
Moffatt
,
H. K.
,
The Helicity of a Knotted Vortex Filament
, Topological Aspects of Dynamics of Fluids and Plasmas, edited by
H. K.
Moffatt
,
G. M.
Zaslavsky
,
P.
Comte
, and
M.
Tabor
(Dordrecht, Boston), Series E., Applied Sciences, vol. 218,
NATO ASI Series
(
Kluwer Academic Publishers
,
1992
), pp.
225
236
.
21.
Schwarz
,
G.
,
Hodge Decomposition—A Method for Solving Boundary Value Problems
,
Lecture Notes in Mathematics
, vol.
1607
(
Springer-Verlag
,
Berlin
,
1995
), MR 1367287 (96k:58222).
22.
Tricker
,
R. A. R.
,
Early Electrodynamics: The First Law of Circulation
(
Pergamon
,
Oxford
,
1965
).
23.
Warner
,
F. W.
,
Foundations of Differentiable Manifolds and Lie groups
,
Graduate Texts in Mathematics
, vol. 94 (
Springer-Verlag
,
New York
,
1983
), Corrected reprint of the 1971 edition, MR 722297 (84k:58001).
24.
Weyl
,
H.
, “
The method of orthogonal projection in potential theory
,”
Duke Math. J.
7
,
411
444
(
1940
), MR 0003331 (2,202a).
25.
Woltjer
,
L.
, “
A theorem on force-free magnetic fields
,”
Proc. Nat. Acad. Sci. USA
44
,
489
491
(
1958
).
26.
Zimmer
,
R. J.
,
Essential results of functional analysis
,
Chicago Lectures in Mathematics
(
University of Chicago Press
,
Chicago, IL
,
1990
), MR 1045444 (91h:46002).
You do not currently have access to this content.