We study the locality of the acceleration temperature in the Unruh effect. To this end, we develop a new formalism for the modeling of macroscopic irreversible detectors. In particular, the formalism allows for the derivation of the higher-order coherence functions, analogous to the ones employed in quantum optics, that encode temporal fluctuations and correlations in particle detection. We derive a causal and approximately local-in-time expression for an Unruh-DeWitt detector moving in a general path in Minkowski spacetime. Moreover, we derive the second-order coherence function for uniformly accelerated Unruh-DeWitt detectors. We find that the fluctuations in detection time for a single Unruh-DeWitt detector are thermal. However, the correlations in detection time between two Unruh-DeWitt detectors with the same acceleration but separated by a finite distance are not thermal. This result suggests that the Unruh effect is fundamentally local, in the sense that the notion of acceleration temperature applies only to the properties of local field observables.

1.
S. A.
Fulling
,
Phys. Rev. D
7
,
2850
(
1973
).
2.
W. G.
Unruh
, in
Proceedings of the 1st Marcel Grossmann Meeting on General Relativity
, edited by
R.
Ruffini
(
North-Holland, Amsterdam
,
1977
).
3.
W. G.
Unruh
,
Phys. Rev. D
14
,
870
(
1976
).
4.
S. W.
Hawking
,
Commun. Math. Phys.
43
,
199
(
1975
).
5.
G. W.
Gibbons
, and
S. W.
Hawking
,
Phys. Rev. D
15
,
2738
(
1977
).
6.
See, for example,
T.
Jacobson
,
Phys. Rev. Lett.
75
,
1260
(
1995
);
[PubMed]
T.
Padmanabhan
,
Gen. Relativ. Gravit.
34
,
2029
(
2002
);
T.
Padmanabhan
,
Rep. Prog. Phys.
73
,
046901
(
2010
);
E. P.
Verlide
,
J. High Energy Phys.
1104
,
029
(
2011
).
7.
J. J.
Bisognano
and
E. H.
Wichmann
,
J. Math. Phys.
16
,
985
(
1975
);
J. J.
Bisognano
and
E. H.
Wichmann
,
J. Math. Phys.
17
,
303
(
1976
).
8.
S. A.
Fulling
and
S. N. M.
Ruijsenaars
,
Phys. Rep.
152
,
135
(
1987
).
9.
W. G.
Unruh
and
R. M.
Wald
,
Phys. Rev. D
29
,
1047
(
1984
).
10.
J. S.
Bell
and
J. M.
Leinaas
,
Nucl. Phys. B
212
,
131
(
1983
);
J. S.
Bell
and
J. M.
Leinaas
,
Nucl. Phys. B
284
,
488
(
1987
).
11.
J.
Audretsch
and
R.
Müller
,
Phys. Rev. A
50
,
1755
(
1994
).
12.
G. E. A.
Matsas
and
D. A. T.
Vanzella
,
Phys. Rev. D
59
,
094004
(
1999
);
G. E. A.
Matsas
and
D. A. T.
Vanzella
,
Phys. Rev. D
63
,
014010
(
2001
);
G. E. A.
Matsas
and
D. A. T.
Vanzella
,
Phys. Rev. Lett.
87
,
151301
(
2001
).
[PubMed]
13.
L. C. B.
Crispino
,
A.
Higuchi
, and
G. E. A.
Matsas
,
Rev. Mod. Phys.
80
,
778
(
2008
).
14.
T.
Padmanabhan
,
Astrophys. Space Sci.
83
,
247
(
1982
).
15.
B. S.
DeWitt
, in
General Relativity: An Einstein Centenary Survey
, edited by
S. W.
Hawking
and
W.
Israel
(
Cambridge University Press
,
Cambridge, England
,
1979
), p.
680
.
16.
R. J.
Glauber
,
Phys. Rev.
130
,
2529
(
1963
).
17.
D. F.
Walls
and
G. J.
Milburn
,
Quantum Optics
(
Springer
,
New York
,
2010
).
18.
Y.-S.
Lin
and
B. L.
Hu
,
Phys. Rev. D
76
,
064008
(
2007
).
19.
B. F.
Svaiter
and
N. F.
Svaiter
,
Phys. Rev. D
46
,
5267
(
1992
).
20.
A.
Higuchi
,
G. E. A.
Matsas
, and
C. B.
Peres
,
Phys. Rev. D
48
,
3731
(
1993
).
21.
L.
Sriramkumar
and
T.
Padmanabhan
,
Class. Quantum Grav.
13
,
2061
(
1996
).
22.
S.
Schlicht
,
Class. Quantum Grav.
21
,
4647
(
2004
).
23.
P.
Langlois
,
Ann. Phys. (N. Y.)
321
,
2027
(
2006
).
24.
J.
Louko
and
A.
Satz
,
Class. Quantum Grav.
23
,
6321
(
2006
).
25.
E. B.
Davies
,
Quantum Theory of Open Systems
(
Academic
,
New York
,
1976
).
26.
R.
Omnés
,
The Interpretation of Quantum Mechanics
(
Princeton University
,
Princeton, NJ
,
1994
).
27.
C.
Anastopoulos
,
Found. Phys.
36
,
1601
(
2006
).
28.
Quantum Theory and Measurement
, edited by
J. A.
Wheeler
and
W. H.
Zurek
(
Princeton University
,
Princeton, NJ
,
1983
).
29.
P.
Busch
,
P. J.
Lahti
, and
P.
Mittelstaedt
,
The Quantum Theory of Measurement
(
Springer
,
New York
,
1996
).
30.
C.
Anastopoulos
and
N.
Savvidou
,
J. Math. Phys.
47
,
122106
(
2006
).
31.
C.
Anastopoulos
and
N.
Savvidou
,
J. Math. Phys.
49
,
022101
(
2008
);
C.
Anastopoulos
,
J. Math. Phys.
49
,
022103
(
2008
);
C.
Anastopoulos
and
N.
Savvidou
, e-print arXiv:1005.4307.
32.
R. B.
Griffiths
,
Consistent Quantum Theory
(
Cambridge University Press
,
Cambridge, England
,
2003
).
33.
R.
Omnés
,
Understanding Quantum Mechanics
(
Princeton University
,
Princeton, NJ
,
1999
).
34.
M.
Gell-Mann
and
J. B.
Hartle
, in
Complexity, Entropy and the Physics of Information
, edited by
W.
Zurek
(
Addison-Wesley
,
Reading, MA
,
1990
);
M.
Gell-Mann
and
J. B.
Hartle
,
Phys. Rev. D
47
,
3345
(
1993
).
35.
M.
Gell-Mann
and
J. B.
Hartle
, “
Spacetime quantum mechanics and the quantum mechanics of spacetime
,” in
Gravitation and Quantizations: Proceedings of the 1992 Les Houches Summer School
, ed. by
B.
Julia
and
J.
Zinn-Justin
,
North Holland, Amsterdam
,
1995
.
36.
M. D.
Srinivas
and
E. B.
Davies
,
J. Mod. Opt.
28
,
981
(
1981
);
M. D.
Srinivas
and
E. B.
Davies
,
J. Mod. Opt.
29
,
235
(
1982
).
37.
C.
Rovelli
,
Class. Quantum Grav.
20
,
4919
(
2003
).
38.
P.
Martinetti
,
J. Phys.: Conf. Ser.
68
,
01202
(
2007
).
39.
S. A.
Fulling
and
W. G.
Unruh
,
Phys. Rev. D
70
,
048701
(
2004
).
40.
V. A.
Belinskii
,
B. M.
Karnakov
,
V. D.
Mur
, and
N. B.
Narozhnyi
,
JETP Lett.
65
,
902
(
1997
);
A. M.
Fedotov
,
V. D.
Mur
,
N. B.
Narozhnyi
,
N. B.
Narozhnyi
, and
B. M.
Karnakov
,
Phys. Lett. A
254
,
126
(
1999
).
41.
F.
Costa
and
F.
Piazza
,
New J. Phys.
11
,
113006
(
2009
).
42.
R.
Haag
,
Local Quantum Physics
(
Springer
,
New York
,
1996
).
43.
D.
Buchholz
,
I.
Ojima
, and
H.
Roos
,
Ann. Phys.
297
,
219
(
2002
);
D.
Buchholz
,
Commun. Math. Phys.
237
,
271
(
2003
);
C.
Solveen
,
Class. Quantum Grav.
27
,
235002
(
2010
).
You do not currently have access to this content.