In 1995, Doebner and Mann introduced an approach to the ray representations of the Galilei group in (1 + 1)-dimensions, giving rise to quantum generators with an explicit dependence on time. Recently (2004), Wawrzycki proposed a generalization of Bargmann's theory: in his paper, he introduce phase exponents that are explicitely dependent by 4-space point. In order to find applications of such generalization, we extend the approach of Doebner and Mann to higher dimensions: as a result, we determine the generators of the ray representation in (2 + 1) and (3 + 1) dimensions. The differences of the outcoming formal apparatus with respect to the smaller dimension case are established.

1.
H.
Weyl
,
The Thoery of Groups and Quantum Mechanics
(
Courier Dover Publications
,
New York
,
1950
).
2.
P. E.
Wigner
,
Ann. Math.
40
(
1
),
149
(
1939
).
3.
V.
Bargmann
,
Ann. Math.
59
,
1
(
1954
).
4.
P. E.
Wigner
,
Group Theory and Its Application to the Quantum Theory of Atomic Spectra
(
Academic
,
New York
,
1959
).
5.
A.
Messiah
,
Quantum Mechanics
(
North-Holland
,
Amsterdam
,
1975
), Vol.
I
.
6.
U.
Uhlhorn
,
Ark. Fys.
23
,
307
340
(
1963
).
7.
V.
Bargmann
,
J. Math. Phys.
5
(
7
),
862
(
1964
).
8.
G. C.
Hegerfeldt
,
K.
Kraus
, and
E. P.
Wigner
,
J. Math. Phys.
9
(
12
),
2029
(
1968
).
9.
R. H.
Brennich
,
Ann. Inst. Henri Poincare, Sec. A
13
(
2
),
137
(
1970
).
10.
S. K.
Bose
,
J. Math. Phys.
36
,
875
(
1995
).
11.
H.-D.
Doebner
and
H.-J.
Mann
,
J. Math. Phys.
36
,
3210
(
1995
).
12.
D. R.
Grigore
,
J. Math. Phys.
37
,
460
(
1996
).
13.
J.
Wawrzycki
,
Commun. Math Phys.
250
,
215
(
2004
).
You do not currently have access to this content.