In a previous work, a perturbative approach to a class of Fokker-Planck equations, which have constant diffusion coefficients and small time-dependent drift coefficients, was developed by exploiting the close connection between the Fokker-Planck equations and the Schrödinger equations. In this work, we further explore the possibility of similarity solutions of such a class of Fokker-Planck equations. These solutions possess definite scaling behaviors and are obtained by means of the so-called similarity method.

1.
H.
Risken
,
The Fokker-Planck Equation
, 2nd. ed. (
Springer-Verlag
,
Berlin
,
1996
).
2.
S.
Nayakshin
and
F.
Melia
,
Astrophys. J., Suppl. Ser.
114
,
269
(
1998
).
3.
G. G.
Howes
,
S. C.
Cowley
,
W.
Dorland
,
G. W.
Hammett
,
E.
Quataert
, and
A. A.
Schekochihin
,
Astrophys. J.
651
,
590
(
2006
).
4.
B.
Nowakowski
,
Phys. Rev. E
53
,
2964
(
1996
).
5.
I.
L’Heureux
,
Phys. Rev. E
51
,
2787
(
1995
).
6.
M.
Schienbein
and
H.
Gruler
,
Bull. Math. Biol.
55
(
3
),
585
(
1993
).
7.
T. D.
Frank
,
P. J.
Beek
, and
R.
Friedrich
,
Phys. Rev. E
68
,
021912
(
2003
).
8.
R.
Friedrich
,
J.
Peinke
, and
Ch.
Renner
,
Phys. Rev. Lett.
84
,
5224
(
2000
).
9.
R.
Blackmore
and
B.
Shizgal
,
Phys. Rev. A
31
,
1855
(
1985
).
10.
A. N.
Malakhov
and
A. L.
Pankratov
,
Physica A
229
,
109
(
1996
).
11.
T.
Blum
and
A. J.
McKane
,
J. Phys. A
29
,
1859
(
1996
).
13.
E. W.
Larsen
,
C. D.
Levermore
,
G. C.
Pomraning
, and
J. G.
Sanderson
,
J. Comput. Phy.
61
,
359
(
1985
).
14.
H. P.
Langtangen
,
Probab. Eng. Mech.
6
,
33
(
1991
).
15.
C.-L.
Ho
and
R.
Sasaki
,
Ann. Phys.
323
,
883
(
2008
).
16.
C.-L.
Ho
and
Y.-M.
Dai
,
Mod. Phys. Lett. B
22
,
475
(
2008
).
17.
D.
Zwillinger
,
Handbook of Differential Equations
, 2nd. ed. (
Academic
,
New York
,
1992
).
18.
W.-T.
Lin
and
C.-L.
Ho
, “
Similarity solutions of Fokker-Planck equation with time-dependent coefficients
,” (unpublished).
You do not currently have access to this content.