The Helmholtz equation and Schrödinger's equation for |$H_2 ^ +$|H2+ are separable in (respectively) oblate and prolate spheroidal coordinates. They share the same form of the angular equation. In both cases the radial and angular equations have solutions in terms of confluent Heun functions. We show that the zeros of the Wronskian of a pair of solutions to the angular equation give the allowed values of the separation of variables parameter. Since the Heun functions and their derivatives are implemented in Maple, this provides a new method of calculating the physical values of the separation of variables parameter, without programming. We also derive the asymptotic forms of the radial solutions of the Helmholtz equation, and obtain integral relations between the radial and angular solutions.

2.
Heun's Differential Equations
, edited by
A.
Ronveaux
(
Oxford University Press
,
Oxford
,
1995
).
3.
S. Y.
Slavyanov
and
W.
Lay
,
Special Functions: A Unified Theory Based on Singularities
(
Oxford University Press
,
Oxford
,
2000
).
4.
G.
Marcilhacy
and
R.
Pons
,
J. Phys. A
18
,
2441
(
1985
).
6.
L. J.
El-Jaick
and
B. D. B.
Figueiredo
,
J. Math. Phys.
50
,
123511
(
2009
).
7.
R. L.
Hall
,
N.
Saad
, and
K. D.
Sen
,
J. Math. Phys.
51
,
022107
(
2010
).
8.
Ø.
Burrau
,
Det Kgl. Danske Videnskab. Selskab.
7
,
2
(
1927
).
9.
L.
Pauling
and
E. B.
Wilson
,
Introduction to Quantum Mechanics
(
McGraw-Hill
,
New York
,
1935
), Sec. 42c.
11.
12.
Z.
Ulanowski
and
I. K.
Ludlow
,
Opt. Lett.
25
,
1792
(
2000
).
13.
J.
Lekner
,
J. Opt. A, Pure Appl. Opt.
3
,
407
(
2001
).
14.
J.
Lekner
,
J. Opt. A, Pure Appl. Opt.
6
,
837
(
2004
).
15.
P. E.
Falloon
,
P. C.
Abbott
, and
J. B.
Wang
,
J. Phys. A
36
,
5477
(
2003
).
16.
C.
Flammer
,
Spheroidal Wave Functions
(
Stanford University Press
,
Stanford
,
1957
).
17.
H. A.
Antosiewicz
, “
Bessel Functions of Fractional Order
,” in
Handbook of Mathematical Functions
, Edited by
M.
Abramowitz
and
I. A.
Stegun
(
Dover
,
New York
,
1972
), Chap. 10.
18.
A. N.
Lowan
, “
Spheroidal Wavefunctions
,”in
Handbook of Mathematical Functions
, edited by
M.
Abramowitz
and
I. A.
Stegun
(
Dover
,
New York
,
1972
), Chap. 21.
You do not currently have access to this content.