Tensor models are used nowadays for implementing a fundamental theory of quantum gravity. We define here a polynomial

$\mathcal T$
T encoding the supplementary topological information. This polynomial is a natural generalization of the Bollobás-Riordan polynomial (used to characterize matrix graphs) and is different from the Gurău polynomial [R. Gurău, Ann. Henri Poincare11, 565 (2010)], defined for a particular class of tensor graphs, the colorable ones. The polynomial
$\mathcal T$
T
is defined for both colorable and non-colorable graphs and it is proved to satisfy the deletion/contraction relation. A non-trivial example of a non-colorable graphs is analyzed.

1.
L.
Freidel
,
Int. J. Theor. Phys.
44
,
1769
(
2005
);
Approaches to quantum gravity
,”
310
331
;
D.
Oriti
, e-print arXiv:gr-qc/0607032.
2.
J. Ben
Geloun
,
R.
Gurau
, and
V.
Rivasseau
,
Europhys. Lett.
92
,
60008
(
2010
);
e-print arXiv:1008.0354 [hep-th];
J. Ben
Geloun
,
T.
Krajewski
,
J.
Magnen
, and
V.
Rivasseau
, “Linearized Group Field Theory and Power Counting Theorems,”
Class. Quant. Grav.
27
,
155012
(
2010
);
e-print arXiv:0911.1719 [hep-th].
J.
Magnen
,
K.
Noui
,
V.
Rivasseau
, and
M.
Smerlak
,
Class. Quantum Grav.
26
,
185012
(
2009
);
e-print arXiv:0906.5477 [hep-th];
T.
Krajewski
,
J.
Magnen
,
V.
Rivasseau
,
A.
Tanasa
, and
P.
Vitale
,
Phys. Rev. D
82
,
124069
(
2010
);
e-print arXiv:1007.3150 [gr-qc].
3.
G.
Chapuy
, “
Combinatoire bijective des cartes de genre supérieur
,” Ph.D. dissertation,
Ecole Polytechnique
(2009) (in French).
4.
W. T.
Tutte
,
Graph Theory
(
Addison-Wesley
,
Reading, MA
,
1984
);
H. H.
Crapo
,
Aequ. Math.
3
,
211
(
1969
).
5.
B.
Bollobás
and
O.
Riordan
,
Proc. London Math. Soc.
83
,
513
(
2001
);
B.
Bollobás
and
O.
Riordan
,
Math. Ann.
323
,
81
(
2002
).
6.
R.
Gurau
,
Ann. Henri Poincare
11
,
565
(
2010
);
e-print arXiv:0911.1945 [hep-th].
7.
T.
Krajewski
,
V.
Rivasseau
,
A.
Tanasa
, and
Z.
Wang
,
J. Noncomm. Geom.
4
,
29
(
2010
);
e-print arXiv:0811.0186 [math-ph].
8.
A.
Sokal
, “
The multivariate Tutte polynomial (alias Potts model) for graphs and matroids
,” in
Surveys in Combinatorics, 2005
, edited by
B. S.
Webb
(
Cambridge University Press
,
Cambridge, England
,
2005
), pp.
173–226
.
9.
J.
Ellis-Monaghan
and
C.
Merino
, e-print arXiv:0803.3079;
e-print arXiv:0806.4699, invited chapter for “Structural Analysis of Complex Networks,” Matthias Dehmer, ed., in press.
10.
S.
Chmutov
and
I.
Pak
,
Mosc. Math. J.
7
,
409
(
2007
).
11.
S.
Chmutov
,
J. Comb. Theory B
99
,
617
(
2009
);
12.
F.
Vignes-Tourneret
,
Discrete Mathematics
309
,
5968
(
2009
);
13.
V.
Krushkal
, “
Graphs, links and duality on surfaces
,”
Combinatorics, Probab. Comput
(in press).
14.
F.
David
,
Nucl. Phys.
B
,
257
(
1985
);
P.
Ginsparg
, e-print hep-th/9112013.
15.
L.
Freidel
,
R.
Gurau
, and
D.
Oriti
,
Phys. Rev. D
80
,
044007
(
2009
);
e-print [arXiv:0905.3772 [hep-th]].
16.
V.
Bonzom
and
M.
Smerlak
,
Lett. Math. Phys.
93
,
295
(
2010
);
e-print [arXiv:1004.5196 [gr-qc]].
17.
R.
Gurău
,
Class. Quantum Grav.
27
,
235023
(
2010
);
e-print [arXiv:1006.0714 [hep-th]];
M.
Smerlak
, e-print [arXiv:1102.1844 [hep-th]].
18.
R.
Gurău
,
Commun. Math. Phys.
304
,
69
93
(
2011
);
e-print arXiv:0907.2582 [hep-th].
19.
J. B.
Geloun
,
T.
Krajewski
,
J.
Magnen
, and
V.
Rivasseau
,
Class. Quantum Grav.
27
155012
(
2010
);
e-print [arXiv:1002.3592 [hep-th]].
20.
A.
Tanasa
,
Rom. J. Phys.
53
,
1207
(
2008
);
e-print [arXiv:0808.3703 [hep-th]].
21.
V.
Krushkal
and
D.
Renardy
, e-print arXiv:1012.131[math.CO].
22.
B.
Bollobás
and
O.
Riordan
,
Combinatorics Probab. Comput.
8
,
45
(
1999
).
23.
J. A.
Ellis-Monaghan
and
I.
Sarmiento
,
Eur. J. Comb.
, in press,
24.
T.
Krajewski
,
V.
Rivasseau
, and
F.
Vignes-Tourneret
, e-print arXiv:0912.5438 [math-ph].
25.
R.
Gurău
and
V.
Rivasseau
,
Commun. Math. Phys.
272
,
811
(
2007
);
V.
Rivasseau
and
A.
Tanasa
,
Commun. Math. Phys.
279
,
355
(
2008
);
26.
C.
Itzykson
and
J.-B.
Zuber
,
Quantum Field Theory
(
Dover
,
New York
,
2006
).
27.
V.
Rivasseau
,
From Perturbative to Constructive Renormalization
(
Princeton University
,
Princeton, NJ
,
1992
).
28.
S.
Bloch
,
H.
Esnault
, and
D.
Kreimer
,
Commun. Math. Phys.
267
,
181
(
2006
).
29.
F.
Brown
,
Commun. Math. Phys.
287
,
925
(
2009
).
30.
R.
Gurau
,
J.
Magnen
,
V.
Rivasseau
, and
A.
Tanasa
,
Commun. Math. Phys.
287
,
275
(
2009
);
e-print [arXiv:0802.0791 [math-ph]].
31.
H.
Grosse
and
R.
Wulkenhaar
,
Commun. Math. Phys.
256
,
305
(
2005
);
e-print [hep-th/0401128].
32.
H.
Ooguri
,
Mod. Phys. Lett. A
7
,
2799
(
1992
);
e-print [hep-th/9205090].
33.
C. M.
Fortuin
and
P. W.
Kasteleyn
,
Physica
57
,
536
(
1972
).
You do not currently have access to this content.