We use Jones-Wenzl idempotents to construct bases for the relative Kauffman bracket skein module of a square with n points colored 1 and one point colored h. We consider a natural bilinear form on this skein module. We calculate the determinant of the matrix for this form with respect to the natural basis. We reduce the computation to count some steps in generalized Dyck paths. Moreover, we relate our determinant to a determinant on semi-meanders.

1.
V.
Jones
,
Bull. Amer. Math. Soc.
12
,
103
(
1985
).
2.
E.
Witten
,
Commun. Math. Phys.
121
,
351
(
1989
).
3.
L.
Kauffman
,
Knots in Physics
(
World Scientific
,
Singapore
,
1994
).
4.
N.
Temperley
and
E.
Lieb
,
Proc. R. Soc. London, Ser. A
322
,
251
(
1971
).
5.
W.
Lickorish
,
Pac. J. Math.
149
,
337
(
1991
).
6.
X.
Cai
,
Math. Proc. Cambridge Philos. Soc.
151
,
83
(
2011
).
7.
P.
Di Francesco
,
Commun. Math. Phys.
191
,
543
(
1998
).
8.
P.
Di Francesco
,
O.
Golinelli
, and
E.
Guitter
,
Commun. Math. Phys.
186
,
1
(
1997
).
9.
C.
Blanchet
,
N.
Habegger
,
G.
Masbaum
, and
P.
Vogel
,
Topology
34
,
883
(
1995
).
10.
11.
W.
Lickorish
,
An Introduction to Knot Theory
, Graduate Texts in Mathematics (
Springer
,
New York
,
1997
).
12.
L.
Kauffman
and
L.
Lins
,
Ann. Math. Stud.
134
(
1994
).
13.
H.
Wilf
,
Generatingfunctionology
(
Academic
,
New York
,
1990
).
You do not currently have access to this content.