We study surfaces which are in equilibrium for an anisotropic surface energy and which are invariant under a helicoidal motion. For anisotropic functionals with axially symmetric Wulff shapes, we generalize the recently developed twizzler representation [Perdomo, O., A dynamical interpretation of the profile curve of CMC twizzlers surfaces, e-print arXiv:1001.5198v1] to the anisotropic case and show how all helicoidal constant anisotropic mean curvature surfaces can be obtained by quadratures. When the functional is not axially symmetric, we produce a canonical critical point which is analogous to the classical helicoid.

1.
Barros
,
M.
and
Ferrandez
,
A.
, “
A conformal variational approach for helices in nature
,”
J. Math. Phys.
40
,
103529
(
2009
).
2.
Cahn
,
J. W.
and
Hoffman
,
D. W.
, “
A vector thermodynamic for anisotropic surfaces-II. Curved and faceted surfaces
,”
Acta Metall.
22
,
1205
1214
(
1974
).
3.
Chandrasekhar
,
S.
, “
Surface tension of liquid crystals
,”
Mol. Cryst.
2
,
71
80
(
1966
).
4.
do Carmo
,
M. P.
and
Dajczer
,
M.
, “
Helicoidal surfaces with constant mean curvature
,”
Tohoku Math. J.
34
(
3
),
425
435
(
1982
).
5.
Eisenhart
,
L. P.
,
A Treatise on the Differential Geometry of Curves and Surfaces
(
Dover
,
New York
,
1960
).
6.
Giga
,
Y.
,
Surface Evolution Equations. A Level Set Approach
,
Monographs in Mathematics
Vol.
99
(
Birkhuser Verlag
,
Basel
,
2006
).
7.
Hormander
,
L.
, “
Uniqueness theorems for second order elliptic differential equations
,”
Commun. Partial Differ. Equ.
8
(
1
),
21
64
(
1983
).
8.
Koiso
,
M.
and
Palmer
,
B.
, “
Geometry and stability of surfaces with constant anisotropic mean curvature
,”
Indiana Univ. Math. J.
54
(
6
),
1817
1852
(
2005
).
9.
Koiso
,
M.
and
Palmer
,
B.
, “
Rolling construction for anisotropic Delaunay surfaces
,”
Pacific J. Math.
234
(
2
),
345
378
(
2008
).
10.
Kuhns
,
C.
,
Helicoidal surfaces of constant anisotropic mean curvature
, D. A. thesis,
Idaho State University
,
2010
.
11.
Palmer
,
B.
, “
Equilibria for anisotropic bending energies
,”
Math. Phys.
50
,
023512
(
2009
).
12.
Perdomo
,
O.
, “
A dynamical interpretation of the profile curve of CMC twizzlers surfaces
,” e-print arXiv:1001.5198v1.
13.
Roussos
,
I. M.
, “
The helicoidal surfaces as Bonnet surfaces
,”
Tohoku Math. J.
40
(
3
),
485
490
(
1988
).
14.
Seaman
,
W.
, “
Helicoids of constant mean curvature and their Gauss maps
,”
Pacific J. Math.
110
(
2
),
387
396
(
1984
).
You do not currently have access to this content.