We study some symplectic submanifolds in the cotangent bundle of a factorizable Lie group defined by second class constraints. By applying the Dirac method, we study many issues of these spaces as fundamental Dirac brackets, symmetries, and collective dynamics. As the main application, we study integrable systems on these submanifolds as inherited from a system on the whole cotangent bundle, meeting in a natural way with the Adler-Kostant-Symes theory of integrability.

1.
Adler
,
M.
and
van Moerbeke
,
P.
, “
Completely integrable systems, Euclidean Lie algebras and curves
,”
Adv. Math.
38
,
267
317
(
1980
);
Kostant
,
B.
, “
The solution to a generalized Toda lattice and representation theory
,”
ibid.
34
,
195
338
(
1979
);
Symes
,
W.
, “
Systems of Toda type, inverse spectral problem and representation theory
,”
Invent. Math.
159
,
13
51
(
1980
).
2.
Ahbraham
,
M.
and
Marsden
,
J.
,
Foundations of Mechanics
, 2nd ed. (
Benjamin/Cummings
,
Reading, MA
,
1978
).
3.
Arnold
,
V. I.
,
Mathematical Methods of Classical Mechanics
(
Springer-Verlag
,
New York
,
1989
).
4.
Cabrera
,
A.
and
Montani
,
H.
, “
Hamiltonian loop group actions and T-Duality for group manifolds
,”
J. Geom. Phys.
56
,
1116
1143
(
2006
);
5.
Capriotti
,
S.
and
Montani
,
H.
, “
Integrable systems and Poisson-Lie T-duality: A finite dimensional example
,”
J. Geom. Phys.
60
,
1509
1529
(
2010
);
6.
Dirac
,
P. A. M.
,
Lectures on Quantum Mechanics
,
Belfer Graduate School of Science Monographs Series Vol. 2
(
Yeshiva University
,
New York
,
1964
).
7.
Lu
,
J.-H.
and
Weinstein
,
A.
, “
Poisson Lie groups, dressing transformations, and Bruhat decompositions
,”
J. Differential Geom.
31
, Number 2,
501
526
(
1990
).
8.
Marsden
,
J. E.
,
Misiolek
,
G.
,
Perlmutter
,
M.
, and
Ratiu
,
T. S.
, “
Symplectic reduction for semidirect products and central extensions
,”
Diff. Geom. Appl.
9
,
173
212
(
1998
).
9.
Marsden
,
J.
and
Ratiu
,
T.
,
Introduction to Mechanics and Symmetry
, 2nd ed. (
Benjamin/Cummings
,
Reading, MA
,
1978
).
10.
Marsden
,
J. E.
and
Weinstein
,
A.
, “
Reduction of symplectic manifolds with symmetry
,”
Rep. Math. Phys.
5
,
121
131
(
1974
).
11.
Reyman
,
A. G.
and
Semenov-Tian-Shansky
,
M. A.
, “
Reduction of Hamiltonian systems, affine Lie algebras, and Lax equations I
,”
Invent. Math.
54
,
81
100
(
1979
);
Reduction of Hamiltonian systems, affine Lie algebras, and Lax equations II
,”
Invent. Math.
63
,
423
32
(
1981
).
12.
Reyman
,
A. G.
and
Semenov-Tian-Shansky
,
M. A.
, “
Group-theoretical methods in the theory of finite-dimensional integrable systems
,” in
Dynamical Systems VII (Encyclopaedia of Mathematical Sciences)
, edited by
V. I.
Arnold
and
S. P.
Novikov
(
Springer
,
New York
,
1993
).
13.
Semenov-Tian-Shansky
,
M. A.
, “
Dressing transformations and Poisson group actions
,”
Publ. RIMS, Kyoto Univ.
21
,
1237
1260
(
1985
).
You do not currently have access to this content.