A construction of multidimensional parametric Yang-Baxter maps is presented. The corresponding Lax matrices are the symplectic leaves of first-degree matrix polynomials equipped with the Sklyanin bracket. These maps are symplectic with respect to the reduced symplectic structure on these leaves and provide examples of integrable mappings. An interesting family of quadrirational symplectic YB maps on

$\mathbb {C}^4 \times \mathbb {C}^4$
C4×C4 with 3 × 3 Lax matrices is also presented.

1.
Adler
,
V. E.
,
Bobenko
,
A. I.
, and
Suris
,
Y. B.
, “
Classification of integrable equations on quad-graphs. The consistency approach
,”
Commun. Math. Phys.
233
,
513
543
(
2003
).
2.
V. E.
Adler
,
A. I.
Bobenko
, and
Y. B.
Suris
, Geometry of Yang-Baxter maps: Pencils of conics and quadrirational mappings,
Commun. Anal. Geom.
12
,
967
1007
(
2004
).
3.
V. E.
Adler
and
R. I.
Yamilov
, Explicit auto-transformations of integrable chains,
J. Phys. A
27
,
477
492
, (
1994
).
4.
A. I.
Bobenko
and
Y. B.
Suris
, Integrable systems on quad-graphs,
Int. Math. Res. Notices
11
,
573
611
, (
2002
).
5.
V. G.
Drinfeld
, On some Unsolved Problems in Quantum Group Theory,
Lect. Notes Math.
1510
,
1
8
, (
1992
).
6.
P.
Etingof
,
T.
Schedler
, and
A.
Soloviev
, Set-theoretical solutions to the quantum Yang-Baxter equation,
Duke Math. J.
100
(
2
),
169
209
, (
1999
).
7.
P.
Etingof
, Geometric crystals and set-theoretical solutions to the quantum Yang-Baxter equation,
Commun. Algebra
,
31
(
4
),
1961
1973
, (
2003
).
8.
V. M.
Goncharenko
and
A. P.
Veselov
, Yang-Baxter maps and matrix solitons, in
New Trends in Integrability and Partial Solvability
,”
Proceedings of the NATO Advanced Research Workshop
, on NATO Science Series II: Mathematics, Physics and Chemistry, Cadiz, Spain, 12–16 June 2002, edited by
A. B.
Shabat
,
A.
González-López
,
M.
Mañas
,
L. Martínez
Alonso
, and
M. A.
Rodríguez
(
Kluwer Academic Publishers
,
Dordrecht, The Netherlands
,
2004
), p.
191
197
.
9.
T. E.
Kouloukas
and
V. G.
Papageorgiou
, Yang-Baxter maps with first-degree-polynomial 2 × 2 Lax matrices,
J. Phys. A: Math. Theor.
42
,
404012
, (
2009
).
10.
Kouloukas
,
T. E.
and
Papageorgiou
,
V. G.
, e-print arXiv:1006.2145v1 [math-ph].
11.
J.-H.
Lu
,
M.
Yan
, and
Y.-C.
Zhu
, On the set–theoretical Yang–Baxter equation,
Duke Math. J.
104
,
1
18
, (
2000
).
12.
F. W.
Nijhoff
, Lax pair for the Adler (lattice Krichever-Novikov) system,
Phys. Lett. A
297
,
49
58
, (
2002
).
13.
V. G.
Papageorgiou
,
F. W.
Nijhoff
, and
H. W.
Capel
, Integrable mappings and nonlinear integrable lattice equations,
Phys. Lett. A
147
,
106
114
, (
1990
).
14.
V. G.
Papageorgiou
,
Yu. B.
Suris
,
A. G.
Tongas
, and
A. P.
Veselov
, On Quadrirational Yang-Baxter Maps,
SIGMA 6
,
033
(
2010
), p.
9
.
15.
V. G.
Papageorgiou
,
A. G.
Tongas
, and
A. P.
Veselov
, Yang-Baxter maps and symmetries of integrable equations on quad-graphs,
J. Math. Phys.
47
,
083502
(
2006
).
16.
V. G.
Papageorgiou
and
A. G.
Tongas
, Yang-Baxter maps and multi-field integrable lattice equations,
J. Phys. A
40
(
42
),
12677
12690
, (
2007
).
17.
Reshetikhin
,
N.
and
Veselov
,
A. P.
, Poisson Lie groups and Hamiltonian theory of the Yang–Baxter maps, math. QA/0512328,
2005
.
18.
Semenov-Tian-Shansky
,
M.
Dressing transformations and Poisson group actions,
Publ. Res. Inst. Math. Sci.
21
(
6
),
1237
1260
(
1985
).
19.
E. K
Sklyanin
, Some algebraic structures connected with the Yang-Baxter equation,
Funct. Anal. Appl.
16
(
4
),
263
270
, (
1983
).
20.
E. K
Sklyanin
, Classical limits of SU(2)–invariant solutions of the Yang-Baxter equation,
J. Sov. Math.
40
(
1
),
93
107
, (
1988
).
21.
Y. B.
Suris
and
A. P.
Veselov
, Lax matrices for Yang–Baxter maps,
J. Nonlinear Math. Phys.
10
,
223
230
, (
2003
).
22.
A. P.
Veselov
, Yang-Baxter maps and integrable dynamics,
Phys. Lett. A
314
,
214
221
, (
2003
).
23.
A. P.
Veselov
, Yang-Baxter maps: Dynamical point of view, Combinatorial Aspects of Integrable Systems (Kyoto, 2004), MSJ Mem. (
2007
), Vol. 17, pp
145
167
.
24.
A.
Weinstein
and
P.
Xu
, 1992 Classical solutions to the Quantum Yang–Baxter equation,
Commun. Math. Phys.
148
,
309
343
, (
1992
).
You do not currently have access to this content.