A construction of multidimensional parametric Yang-Baxter maps is presented. The corresponding Lax matrices are the symplectic leaves of first-degree matrix polynomials equipped with the Sklyanin bracket. These maps are symplectic with respect to the reduced symplectic structure on these leaves and provide examples of integrable mappings. An interesting family of quadrirational symplectic YB maps on $\mathbb {C}^4 \times \mathbb {C}^4$ with 3 × 3 Lax matrices is also presented.
REFERENCES
1.
Adler
, V. E.
, Bobenko
, A. I.
, and Suris
, Y. B.
, “Classification of integrable equations on quad-graphs. The consistency approach
,” Commun. Math. Phys.
233
, 513
–543
(2003
).2.
V. E.
Adler
, A. I.
Bobenko
, and Y. B.
Suris
, Geometry of Yang-Baxter maps: Pencils of conics and quadrirational mappings, Commun. Anal. Geom.
12
, 967
–1007
(2004
).3.
V. E.
Adler
and R. I.
Yamilov
, Explicit auto-transformations of integrable chains, J. Phys. A
27
, 477
–492
, (1994
).4.
A. I.
Bobenko
and Y. B.
Suris
, Integrable systems on quad-graphs, Int. Math. Res. Notices
11
, 573
–611
, (2002
).5.
V. G.
Drinfeld
, On some Unsolved Problems in Quantum Group Theory, Lect. Notes Math.
1510
, 1
–8
, (1992
).6.
P.
Etingof
, T.
Schedler
, and A.
Soloviev
, Set-theoretical solutions to the quantum Yang-Baxter equation, Duke Math. J.
100
(2
), 169
–209
, (1999
).7.
P.
Etingof
, Geometric crystals and set-theoretical solutions to the quantum Yang-Baxter equation, Commun. Algebra
, 31
(4
), 1961
–1973
, (2003
).8.
V. M.
Goncharenko
and A. P.
Veselov
, Yang-Baxter maps and matrix solitons, in “New Trends in Integrability and Partial Solvability
,” Proceedings of the NATO Advanced Research Workshop
, on NATO Science Series II: Mathematics, Physics and Chemistry, Cadiz, Spain, 12–16 June 2002, edited by A. B.
Shabat
, A.
González-López
, M.
Mañas
, L. Martínez
Alonso
, and M. A.
Rodríguez
(Kluwer Academic Publishers
, Dordrecht, The Netherlands
, 2004
), p. 191
–197
.9.
T. E.
Kouloukas
and V. G.
Papageorgiou
, Yang-Baxter maps with first-degree-polynomial 2 × 2 Lax matrices, J. Phys. A: Math. Theor.
42
, 404012
, (2009
).10.
11.
J.-H.
Lu
, M.
Yan
, and Y.-C.
Zhu
, On the set–theoretical Yang–Baxter equation, Duke Math. J.
104
, 1
–18
, (2000
).12.
F. W.
Nijhoff
, Lax pair for the Adler (lattice Krichever-Novikov) system, Phys. Lett. A
297
, 49
–58
, (2002
).13.
V. G.
Papageorgiou
, F. W.
Nijhoff
, and H. W.
Capel
, Integrable mappings and nonlinear integrable lattice equations, Phys. Lett. A
147
, 106
–114
, (1990
).14.
V. G.
Papageorgiou
, Yu. B.
Suris
, A. G.
Tongas
, and A. P.
Veselov
, On Quadrirational Yang-Baxter Maps, SIGMA 6
, 033
(2010
), p. 9
.15.
V. G.
Papageorgiou
, A. G.
Tongas
, and A. P.
Veselov
, Yang-Baxter maps and symmetries of integrable equations on quad-graphs, J. Math. Phys.
47
, 083502
(2006
).16.
V. G.
Papageorgiou
and A. G.
Tongas
, Yang-Baxter maps and multi-field integrable lattice equations, J. Phys. A
40
(42
), 12677
–12690
, (2007
).17.
Reshetikhin
, N.
and Veselov
, A. P.
, Poisson Lie groups and Hamiltonian theory of the Yang–Baxter maps, math. QA/0512328, 2005
.18.
Semenov-Tian-Shansky
, M.
Dressing transformations and Poisson group actions, Publ. Res. Inst. Math. Sci.
21
(6
), 1237
–1260
(1985
).19.
E. K
Sklyanin
, Some algebraic structures connected with the Yang-Baxter equation, Funct. Anal. Appl.
16
(4
), 263
–270
, (1983
).20.
E. K
Sklyanin
, Classical limits of SU(2)–invariant solutions of the Yang-Baxter equation, J. Sov. Math.
40
(1
), 93
–107
, (1988
).21.
Y. B.
Suris
and A. P.
Veselov
, Lax matrices for Yang–Baxter maps, J. Nonlinear Math. Phys.
10
, 223
–230
, (2003
).22.
A. P.
Veselov
, Yang-Baxter maps and integrable dynamics, Phys. Lett. A
314
, 214
–221
, (2003
).23.
A. P.
Veselov
, Yang-Baxter maps: Dynamical point of view, Combinatorial Aspects of Integrable Systems (Kyoto, 2004), MSJ Mem. (2007
), Vol. 17, pp 145
–167
.24.
A.
Weinstein
and P.
Xu
, 1992 Classical solutions to the Quantum Yang–Baxter equation, Commun. Math. Phys.
148
, 309
–343
, (1992
).© 2011 American Institute of Physics.
2011
American Institute of Physics
You do not currently have access to this content.