We study spectral properties of some discrete Dirac operators with nonzero potential only at some sparse and suitably randomly distributed positions. As observed in the corresponding Schrödinger operators, we determine the Hausdorff dimension of its spectral measure and identify a sharp spectral transition from point to singular continuous.

1.
Carvalho
,
S. L.
,
Marchetti
,
D. H. U.
, and
Wreszinski
,
W. F.
, “
Sparse Block–Jacobi matrices with accurate Hausdorff dimension
,”
J. Math. Anal. Appl.
368
,
218
(
2010
).
2.
Carvalho
,
S. L.
,
Marchetti
,
D. H. U.
, and
Wreszinski
,
W. F.
, “
On the uniform distribution of the Prüfer angles and its implication to a sharp transition of Jacobi matrices with randomly sparse perturbations
,” e-print arXiv:1006.2849.
3.
Coddington
,
E. A.
and
Levinson
,
N.
,
Theory of Ordinary Differential Equations
(
Krieger Publishing Company
,
Malabar
,
1984
) (reprint edition).
4.
Combes
,
J. M.
and
Mantica
,
G.
, “
Fractal dimensions and quantum evolution associated with sparse potential Jacobi matrices
,” in
Long time behaviour of classical and quantum systems
,
Series on Concrete and Applied Mathematics
Vol.
1
, edited by
S.
Graffi
and
A.
Martinez
(
World Scientific
,
Singapore
,
2001
), pp.
107
123
.
5.
Cycon
,
H. L.
,
Froese
,
R. G.
,
Kirsch
,
W.
, and
Simon
,
B.
,
Schrödinger Operators with Application to Quantum Mechanics and Global Geometry
(
Springer
,
Berlin
,
1987
).
6.
de Oliveira
,
C. R.
,
Intermediate Spectral Theory and Quantum Dynamics
(
Birkhäuser
,
Basel
,
2009
).
7.
de Oliveira
,
C. R.
and
Prado
,
R. A.
, “
Dynamical localization for the 1D Bernoulli discrete Dirac operator
,”
J. Phys. A
38
,
L115
(
2005
).
8.
de Oliveira
,
C. R.
and
Prado
,
R. A.
, “
Spectral and localization properties for the one dimensional Bernoulli discrete Dirac operator
,”
J. Math. Phys.
46
,
072105
(
2005
).
9.
Del Rio
,
R.
,
Jitomirskaya
,
S.
,
Last
,
Y.
, and
Simon
,
B.
, “
Operators with singular continuous spectrum, IV. Hausdorff dimension, rank one perturbations and localization
,”
J. Anal. Math.
69
,
153
(
1996
).
10.
Falconer
,
K. J.
,
Fractal Geometry
(
Wiley
,
Chichester
,
1990
).
11.
Gilbert
,
D. J.
and
Pearson
,
D. B.
, “
On subordinacy and analysis of the spectrum of one-dimensional Schrödinger operators
,”
J. Math. Anal. Appl.
128
,
30
(
1987
).
12.
Jitomirskaya
,
S.
and
Last
,
Y.
, “
Power–law subordinacy and singular spectra I. Half–line operators
,”
Acta. Math.
183
,
171
(
1999
).
13.
Khan
,
S.
and
Pearson
,
D. B.
, “
Subordinacy and spectral theory for infinite matrices
,”
Helv. Phys. Acta
65
,
505
(
1992
).
14.
Kiselev
,
A.
,
Last
,
Y.
, and
Simon
,
B.
, “
Modified Prüfer and EFGP transforms and the spectral analysis of one-dimensional Schrödinger operators
,”
Commun. Math. Phys.
194
,
1
(
1998
).
15.
Kuipers
,
L.
and
Niederreiter
,
H.
,
Uniform Distributions of Sequences
(
Wiley
,
New York
,
1974
).
16.
Krutikov
,
D.
, “
Asymptotics of the Fourier transform of the spectral measure for Schrödinger operators with bounded and unbounded sparse potentials
,”
J. Phys. A
35
,
6393
(
2002
).
17.
Last
,
Y.
, “
Quantum dynamics and decomposition of singular continuous spectra
,”
J. Funct. Anal.
142
,
406
(
1996
).
18.
Last
,
Y.
, “
Sturm–Liouville operator on infinite intervals
,” in
Sturm–Liouville Theory: Past and Present
, edited by
W. O.
Amrein
,
A. M.
Hinz
, and
D. B.
Pearson
(
Birkhäuser Verlag
,
Basel
,
2005
), pp.
99
120
.
19.
Last
,
Y.
and
Simon
,
B.
, “
Eigenfunctions, transfer matrices, and absolutely continuous spectrum of one–dimensional Schrödinger operators
,”
Invent. Math.
135
,
329
(
1999
).
20.
Marchetti
,
D. H. U.
,
Wreszinski
,
W. F.
,
Guidi
,
L. F.
, and
Angelo
,
R. M.
, “
Spectral transition in a sparse model and a class of nonlinear dynamical systems
,”
Nonlinearity
20
,
765
(
2007
).
21.
Pearson
,
D. B.
, “
Singular continuous measures in the scattering theory
,”
Commun. Math. Phys.
60
,
13
(
1978
).
22.
Prado
,
R. A.
and
de Oliveira
,
C. R.
, “
Sparse 1D discrete Dirac operators I: Quantum transport
,” (preprint), J. Math. Anal. Appl. (submitted).
23.
Rogers
,
C. A.
and
Taylor
,
S. J.
, “
The analysis of additive set functions in Euclidean space
,”
Acta. Math.
101
,
273
(
1959
).
24.
Saks
,
S.
,
Theory of the Integral
, 2nd ed. (
Hafner
,
New York
,
1937
).
25.
Sakurai
,
J. J.
,
Advanced Quantum Mechanics
(
Addison-Wesley
,
New York
,
1967
).
26.
Simon
,
B.
,
Spectral Analysis of Rank One Perturbations and Applications
,
CRM Proceeding and Lecture Notes
Vol.
8
, edited by
J.
Feldman
,
R.
Froese
, and
L.
Rosen
(
American Mathematical Society
,
Providence, RI
,
1995
), pp.
109
149
.
27.
Simon
,
B.
and
Stolz
,
S.
, “
Operators with singular continuous spectrum. V. Sparse potentials
,”
Proc. Am. Math. Soc.
124
,
2073
(
1996
).
28.
Tcheremchantsev
,
S.
, “
Dynamical analysis of Schrödinger operators with growing sparse potentials
,”
Commun. Math. Phys.
253
,
221
(
2005
).
29.
Thaller
,
B.
,
The Dirac Equation
(
Springer-Verlag
,
Heidelberg
,
1992
).
30.
Teschl
,
H.
,
Jacobi Operators and Completely Integrable Nonlinear Lattices
(
American Mathematical Society
,
New York
,
2000
).
31.
Zlatloš
,
A.
, “
Sparse potentials with fractional Hausdorff dimension
,”
J. Funct. Anal.
207
,
216
(
2004
).
You do not currently have access to this content.