We develop, invoking a suitable system-reservoir model, the Langevin equation with a state-dependent dissipation associated with a quantum Brownian particle submerged in a heat bath that offers a state-dependent friction to study the directed motion (by studying the phase-induced current) in the presence of an external noise. We study the phase induced current when both system and bath are subjected to external modulation by the noise and thereby expose the system to two cross-correlated noises. We also demonstrate the well-known fact that two noises remain mutually correlated if they share a common origin. We study the effects of correlation on the current in a periodic potential and envisage that the steady state current increases with increase in the extent of correlation, implying that exercising control on the degree of correlation can enhance the current in a properly designed experiment. To establish our model, we analyze numerically the effect of the external noise on system and bath separately as well as on composition of both.

1.
V. I.
Mel'nikov
,
Phys. Rep.
209
,
1
(
1991
);
Activated Barrier Crossing
, edited by
P.
Hänggi
and
G.
Fleming
(
World Scientific
,
Singapore
,
1992
);
New Trends in Kramers Reaction Rate Theory
, edited by
P.
Talkner
and
P.
Hänggi
(
Kluwer Academic
,
Dordrecht
,
1995
).
2.
N. G.
van Kampen
,
Stochastic Processes in Physics and Chemistry
(
Elsevier
,
Amsterdam
,
1992
).
3.
U.
Weiss
,
Quantum Dissipative Systems
,
Series in Modern Condensed Matter Physics
, Vol.
13
(
World Scientific
,
Singapore
,
1999
).
4.
H.
Risken
,
The FokkerPlanck Equation: Method of Solution and Applications
(
Springer-Verlag
,
New York
,
1989
).
5.
W. H.
Louisell
,
Quantum Statistical Properties of Radiation
(
Wiley
,
New York
,
1973
).
6.
W. T.
Coffey
,
Yu. P.
Kalmykov
, and
J. T.
Waldron
,
The Langevin Equation
(
World Scientific
,
Singapore
,
2004
).
7.
J. S.
Langer
,
Ann. Phys. (N.Y.)
54
,
258
(
1969
).
8.
A. O.
Caldeira
and
A. J.
Leggett
,
Ann. Phys. (N.Y.)
149
,
374
(
1983
).
9.
P.
Hänggi
,
P.
Talkner
, and
M.
Borkovec
,
Rev. Mod. Phys.
62
,
251
(
1990
).
10.
P. G.
Wolynes
,
Phys. Rev. Lett.
47
,
968
(
1981
).
11.
W. H.
Miller
,
H. D.
Schwartz
, and
J. W.
Tromp
,
J. Chem. Phys.
79
,
4889
(
1983
).
12.
V.
Averin
,
B.
Ruggiero
, and
P.
Silvestrini
,
Macroscopic Quantum Coherence and Quantum Computing
(
Kluwer Academic/Plenum
,
New York
,
2001
).
13.
H.-P.
Breuer
and
F.
Petruccione
,
The Theory of Open Quantum Systems
(
Clarendon
,
Oxford
,
2006
).
14.
C. W.
Gardiner
,
Quantum Noise
(
Springer
,
Berlin
,
1991
);
R. M.
Mazo
,
Brownian Motion: Fluctuations, Dynamics and Applications
(
Oxford University Press
,
Oxford, England
,
2002
);
W.
Ebeling
and
I.
Sokolov
,
Statistical Thermodynamics and Stochastic Theory of Nonequilibrium Systems
(
World Scientific
,
Singapore
,
2005
);
E.
Pollak
and
P.
Talkner
,
Chaos
15
,
026116
(
2005
).
15.
P.
Hänggi
and
G. L.
Ingold
,
Chaos
15
,
026105
(
2005
).
16.
P.
Reimann
,
M.
Grifoni
, and
P.
Hänggi
,
Phys. Rev. Lett.
79
,
10
(
1997
).
17.
R.
Roncaglia
and
G. P.
Tsironis
,
Phys. Rev. Lett.
81
,
10
(
1998
).
18.
J.
Peguiron
and
M.
Grifoni
,
Phys. Rev. E
71
,
010101
(
2005
);
J.
Peguiron
and
M.
Grifoni
,
Chem. Phys.
322
,
169
(
2006
).
19.
M.
Grifoni
and
P.
Hänggi
,
Phys. Rep.
304
,
229
(
1998
).
20.
The Smoluchowski version of stating the dynamical problem in the strong friction limit offers some simplification over the corresponding Fokker-Planck picture in the sense that the former deals with only one variable, the position, while the other has to deal with both position and momentum. In the Smoluchowski equation, the momentum remains captivated by position. Thus, the Smoluchowski equation is essentially a one variable Fokker-Planck equation for spatial diffusion and offers an avenue to be transformed to a one-dimensional Schrödinger equation by invoking a simple trick.
21.
P.
Pechukas
,
J.
Ankerhold
, and
H.
Grabert
,
Ann. Phys.
9
,
794
(
2000
).
22.
J.
Ankerhold
,
P.
Pechukas
, and
H.
Grabert
,
Phys. Rev. Lett.
87
,
086802
(
2001
);
[PubMed]
J.
Ankerhold
and
H.
Grabert
,
Phys. Rev. Lett.
101
,
169902
E
(
2008
).
23.
J.
Ankerhold
,
H.
Grabert
, and
P.
Pechukas
,
Chaos
15
,
026106
(
2005
).
24.
W. T.
Coffey
,
Yu. P.
Kalmykov
,
S. V.
Titovac
, and
B. P.
Mulligan
,
Phys. Chem. Chem. Phys.
9
,
3361
(
2007
).
[PubMed]
25.
L.
Cleary
,
W. L.
Coffey
,
Yu. P.
Kalnykov
, and
S. V.
Titov
,
Phys. Rev. E
80
,
051106
(
2009
).
26.
R.
Tsekov
,
J. Phys. A
28
,
L557
(
1995
);
R.
Tsekov
,
J. Phys. A: Math. Theor.
40
,
10945
(
2007
).
27.
S. A.
Maier
and
J.
Ankerhold
,
Phys. Rev. E
81
,
021107
(
2010
).
28.
R.
Dillenschneider
and
E.
Lutz
,
Phys. Rev. E
80
,
042101
(
2009
).
29.
J.
Ankerhold
,
Phys. Rev. E
64
,
060102
R
(
2001
).
30.
J.
Ankerhold
,
Europhys. Lett.
67
,
280
(
2004
).
31.
L.
Machura
,
M.
Kostur
,
P.
Hänggi
,
P.
Talkner
, and
J.
Łuczka
,
Phys. Rev. E
70
,
031107
(
2004
);
L.
Machura
,
M.
Kostur
,
P.
Talkner
,
J.
Łuczka
, and
P.
Hänggi
,
Phys. Rev. E
73
,
031105
(
2006
).
32.
W. T.
Coffey
,
Yu. P.
Kalmykov
,
S. V.
Titov
, and
B. P.
Mulligan
,
Phys. Rev. E
78
,
031114
(
2008
).
33.
S.
Deffner
,
M.
Brunner
, and
E.
Lutz
, e-print arXiv:cond-mat0902.1858v1.
34.
J. Ł.
uczka
,
R.
Rudnicki
, and
P.
Hänggi
,
Physica A
351
,
60
(
2005
).
35.
D.
Barik
,
D.
Banerjee
, and
D. S.
Ray
,
Progress in Chemical Physics Research
, edited by
A. N.
Linke
(
Nova Publishers
,
New York
,
2006
), Vol.
1
.
36.
D.
Banerjee
,
B. C.
Bag
,
S. K.
Banik
, and
D. S.
Ray
,
J. Chem. Phys.
120
,
8960
(
2004
);
[PubMed]
D.
Barik
,
S. K.
Banik
, and
D. S.
Ray
,
J. Chem. Phys.
119
,
680
(
2003
);
P. K.
Ghosh
,
D.
Barik
,
B. C.
Bag
, and
D. S.
Ray
,
J. Chem. Phys.
123
,
224104
(
2005
).
[PubMed]
37.
D.
Barik
and
D. S.
Ray
,
J. Stat. Phys.
120
,
339
(
2005
).
38.
S.
Bhattacharya
,
P.
Chaudhury
,
S.
Chattopadhyay
, and
J. Ray
Chaudhuri
,
Phys. Rev. E
78
,
021123
(
2008
).
39.
S.
Bhattacharya
,
P.
Chaudhury
,
S.
Chattopadhyay
, and
J.
Ray Chaudhuri
,
Phys. Rev. E
80
,
041127
(
2009
).
40.
G. W.
Ford
and
R. F.
O'Connell
,
Phys. Rev. A
73
,
032103
(
2006
).
41.
M.
Gitterman
,
Phys. Rev. E
65
,
031103
(
2002
);
S. I.
Denisov
,
A. N.
Vitrenko
,
W.
Horsthemke
, and
P.
Hänggi
,
Phys. Rev. E
73
,
036120
(
2006
).
42.
S.
Zhu
,
Phys. Rev. A
47
,
2405
(
1993
).
43.
Y.
Jia
and
J. R.
Li
,
Phys. Rev. E
53
,
5786
(
1996
).
44.
J. Ray
Chaudhuri
,
S.
Chattopadhyay
, and
S. K.
Banik
,
J. Chem. Phys.
128
,
154513
(
2008
).
45.
J. Ray
Chaudhuri
,
S.
Chattopadhyay
, and
S. K.
Banik
,
Phys. Rev. E
76
,
021125
(
2007
).
46.
B. C.
Bag
,
S. K.
Banik
, and
D. S.
Ray
,
Phys. Rev. E
64
,
026110
(
2001
).
47.
P.
Chaudhury
,
B.
Mukherjee
,
S.
Chattopadhyay
, and
J. Ray
Chaudhuri
,
Phys. Chem. Chem. Phys.
10
,
6097
(
2008
).
48.
P.
Jung
,
Phys. Rep.
234
,
175
(
1993
);
C. W.
Xie
,
D. C.
Mei
,
L.
Cao
, and
D. J.
Wu
,
Eur. Phys. J. B
33
,
83
(
2003
).
49.
E. P.
Wigner
,
Phys. Rev.
40
,
749
(
1932
).
50.
The Wigner representation (useful in diverse branches of physics) contains only features common to both quantum and classical statistical mechanics and formally represents quantum mechanics as a statistical theory on classical phase space.
51.
G. W.
Ford
,
M.
Kac
, and
P.
Mazur
,
J. Math. Phys.
6
,
504
(
1965
).
52.
K.
Lindenberg
and
V.
Seshadri
,
Physica A
109
,
483
(
1981
).
53.
J. M.
Sancho
,
M. S.
Miguel
, and
D.
Düerr
,
J. Stat. Phys.
28
,
291
(
1982
).
54.
A.
Fulinski
and
T.
Telejko
,
Phys. Lett. A
152
,
11
(
1991
).
55.
A. J.R.
Madureira
,
P.
Hänggi
, and
H. S.
Wio
,
Phys. Lett. A
271
,
248
(
1996
).
56.
C. J.
Tessone
and
H. S.
Wio
,
Mod. Phys. Lett. B
12
,
1195
(
1998
);
C. J.
Tessone
,
H. S.
Wio
, and
P.
Hänggi
,
Phys. Rev. E
62
,
4623
(
2000
).
57.
L.
Gammaitoni
,
P.
Hänggi
,
P.
Jung
, and
F.
Marchesoni
,
Rev. Mod. Phys.
70
,
223
(
1998
), and references therein.
58.
M.
Borromeo
and
F.
Marchesoni
,
Chaos
15
,
026110
(
2005
);
M.
Borromeo
,
S.
Giusepponi
, and
F.
Marchesoni
,
Phys. Rev. E
74
,
031121
(
2006
);
M.
Borromeo
and
F.
Marchesoni
,
Phys. Rev. E
75
,
041106
(
2007
).
59.
F.
Haake
and
R.
Reibold
,
Phys. Rev. A
32
,
2462
(
1985
).
60.
R. C.
Tolman
,
The Principles of Statistical Mechanics
(
Oxford University Press
,
Oxford, UK
,
1938
).
61.
A. O.
Caldeira
and
A. J.
Leggett
,
Physica A
121
,
587
(
1983
).
62.
J. J.
Halliwell
and
T.
Yu
,
Phys. Rev. D
53
,
2012
(
1996
).
63.
Y.
Tanimura
and
P. G.
Wolynes
,
Phys. Rev. A
43
,
4131
(
1991
).
64.
J. L.
Garcia-Palacios
and
D.
Zueco
,
J. Phys. A
37
,
10735
(
2009
).
65.
R. P.
Feynman
and
F. L.
Vernon
,
Ann. Phys. (N.Y.)
24
,
118
(
1963
).
66.
J. Ray Chaudhuri,
B. C.
Bag
, and
D. S.
Ray
,
J. Chem. Phys.
111
,
10852
(
1999
).
67.
W. H.
Zurek
and
J. P.
Paz
,
Phys. Rev. Lett.
72
,
2508
(
1994
);
[PubMed]
S.
Habib
,
K.
Shizume
, and
W. H.
Zurek
,
Phys. Rev. Lett.
80
,
4361
(
1998
).
68.
B. C.
Bag
,
S.
Chaudhuri
,
J. Ray
Chaudhuri
, and
D. S.
Ray
,
Physica D
125
,
47
(
1999
);
B. C.
Bag
and
D. S.
Ray
,
J. Stat. Phys.
96
,
271
(
1999
);
F.
Haake
,
H.
Risken
,
C.
Savage
, and
D. F.
Walls
,
Phys. Rev. A
34
,
3969
(
1986
).
69.
N. G.
van Kampen
,
Phys. Rep.
24
,
171
(
1976
).
70.
E. A.
Novikov
,
Zh. Eksp. Theor. Fiz.
47
,
1919
(
1964
)
E. A.
Novikov
, [
Soviet Phys. JETP
20
,
1290
(
1965
)].
71.
R. L.
Stratonovich
,
Topics in the Theory of Random Noise
(
Goldon and Breach
,
New York
,
1963
).
72.
P.
Hänggi
and
F.
Marchesoni
,
Rev. Mod. Phys.
81
,
387
(
2009
).
You do not currently have access to this content.