Invariant manifolds play an important role in the study of the qualitative dynamical behaviors for nonlinear stochastic partial differential equations. However, the geometric shape of these manifolds is largely unclear. The purpose of the present paper is to try to describe the geometric shape of invariant manifolds for a class of stochastic partial differential equations with multiplicative white noises. The local geometric shape of invariant manifolds is approximated, which holds with significant likelihood. Furthermore, the result is compared with that for the corresponding deterministic partial differential equations.

1.
Arnold
,
L.
,
Random Dynamical Systems
(
Springer-Verlag
,
Berlin
,
1998
).
2.
Blomker
,
D.
,
Amplitude Equations for Stochastic Partial Differential Equations
,
Interdisciplinary Mathematical Sciences
Vol.
3
(
World Scientific
,
Singapore
,
2007
).
3.
Blomker
,
D.
and
Wang
,
W.
, “
Qualitative properties of local random invariant manifolds for SPDE with quadratic nonlinearity
,”
J. Dyn. Differ. Equ.
22
,
677
695
(
2010
).
4.
Caraballo
,
T.
,
Duan
,
J.
,
Lu
,
K.
, and
Schmalfuss
,
B.
, “
Invariant manifolds for random and stochastic partial differential equations
,”
Adv. Nonlinear Stud.
10
,
23
52
(
2010
).
5.
Caraballo
,
T.
,
Chueshov
,
I.
, and
Langa
,
J.
, “
Existence of invariant manifolds for coupled parabolic and hyperbolic stochastic partial differential equations
,”
Nonlinearity
18
(
2
),
747
767
(
2005
).
6.
Da Prato
,
G.
and
Zabczyk
,
J.
,
Stochastic Equations in Infinite Dimensions
(
Cambridge University Press
,
Cambridge, England
,
1992
).
7.
Duan
,
J.
,
Lu
,
K.
, and
Schmalfuss
,
B.
, “
Invariant manifolds for stochastic partial differential equations
,”
Ann. Probab.
31
(
4
),
2109
2135
(
2003
).
8.
Duan
,
J.
,
Lu
,
K.
, and
Schmalfuss
,
B.
, “
Smooth stable and unstable manifolds for stochastic evolutionary equations
,”
J. Dyn. Differ. Equ.
16
(
4
),
949
972
(
2004
).
9.
Garcia-Ojalvo
,
J.
and
Sancho
,
J. M.
,
Noise in Spatially Extended Systems
(
Springer
,
Berlin
,
1999
).
10.
Henry
,
D.
,
Geometric Theory of Semilinear Parabolic Equations
,
Lecture Notes in Mathematics
, Vol.
840
, (
Springer-Verlag
,
Berlin
,
1981
).
11.
Imkeller
,
P.
and
Monahan
,
A.
, “
Conceptual stochastic climate dynamics
,”
Stochastics Dyn.
2
,
311
326
(
2002
).
12.
Lu
,
K.
and
Schmalfuss
,
B.
, “
Invariant manifolds for stochastic wave equations
,”
J. Differ. Equations
236
,
460
492
(
2007
).
13.
Mohammed
,
S. A.
,
Zhang
,
T.
, and
Zhao
,
H.
, “
The stable manifold theorem for semilinear stochastic evolution equations and stochastic partial differential equations
,”
Mem. Am. Math. Soc.
196
,
1
105
(
2008
).
14.
Prevot
,
C.
and
Rockner
,
M.
,
A Concise Course on Stochastic Partial Differential Equations
,
Lecture Notes in Mathematics
, Vol.
1905
(
Springer
,
New York
,
2007
).
15.
Rozovskii
,
B. L.
,
Stochastic Evolution Equations
(
Kluwer
,
Boston
,
1990
).
16.
Sun
,
X.
,
Duan
,
J.
, and
Li
,
X.
, “
An impact of noise on invariant manifolds in nonlinear dynamical systems
,”
J. Math. Phys.
51
,
042702
(
2010
).
17.
Temam
,
R.
,
Infinite Dimensional Dynamical Systems in Mechanics and Physics
(
Springer-Verlag
,
New York
,
1997
).
18.
Temam
,
R.
and
Miranville
,
A.
,
Mathematical Modeling in Continuum Mechanics
, 2nd ed., (
Cambridge University Press
,
Cambridge, England
,
2005
).
19.
Waymire
,
E.
and
Duan
,
J.
,
Probability and Partial Differential Equations in Modern Applied Mathematics
,
IMA
Vol.
140
(
Springer
,
New York
,
2005
).
You do not currently have access to this content.