We construct an extension of the Poincaré group which involves a mixture of internal and space-time supersymmetries. The resulting group is an extension of the superPoincaré group with infinitely many generators which carry internal and space-time indices. It is a closed algebra since all Jacobi identities are satisfied and it has, therefore, explicit matrix representations. We investigate the massless case and construct the irreducible representations of the extended symmetry. They are divided into two sets, longitudinal and transversal representations. The transversal representations involve an infinite series of integer and half-integer helicities. Finally, we suggest an extension of the conformal group along the same line.

1.
Antoniadis
,
I.
and
Savvidy
,
G.
, “
Scattering of charged tensor bosons in gauge and superstring theories
,” Prepared for 9th Hellenic School and Workshops on Elementary Particle Physics and Gravity (CORFU 2009), Corfu, Greece, 30 Aug–20 Sep 2009,
Fortschr. Phys.
295 58
,
811
(
2010
);
2.
Bengtsson
,
A. K.
,
Bengtsson
,
I.
, and
Brink
,
L.
, “
Cubic interaction terms for arbitrary spin
,”
Nucl. Phys. B
227
,
31
(
1983
).
3.
Bonanos
,
S.
and
Gomis
,
J.
, “
Infinite sequence of Poincare group extensions: Structure and dynamics
,”
J. Phys. A
43
,
015201
(
2010
);
4.
Brink
,
L.
,
Khan
,
A. M.
,
Ramond
,
P.
, and
Xiong
,
X. x.
, “
Continuous spin representations of the Poincare and super-Poincare groups
,”
J. Math. Phys.
43
,
6279
(
2002
);
5.
Coleman
,
S. R.
and
Mandula
,
J.
, “
All possible symmetries of the S matrix
,”
Phys. Rev.
159
,
1251
(
1967
).
6.
Derendinger
,
J. P.
, “
Lecture notes on globally supersymmetric theories in four-dimensions and two-dimensions
,” in
Proceedings of the 3rd Hellenic School on Elementary Particle Physics
, Corfu, Greece, 13–23 September 1989 (
World Scientific
,
Singapore
,
1990
), pp.
111
243
.
7.
Faddeev
,
L. D.
, “
Operator anomaly for the Gauss law
,”
Phys. Lett. B
145
,
81
(
1984
).
8.
Fang
,
J.
and
Fronsdal
,
C.
, “
Massless fields with half-integral spin
,”
Phys. Rev.
D18
,
3630
(
1978
).
9.
Fierz
,
M.
, “
Über die relativistische theorie kräftefreier teilchen mit beliebigem spin
,”
Helv. Phys. Acta
12
,
3
(
1939
).
10.
Fierz
,
M.
, “
Non-local fields
,”
Phys. Rev.
78
,
184
(
1950
).
11.
Fierz
,
M.
and
Pauli
,
W.
, “
On Relativistic Wave Equations for Particles of Arbitrary Spin in an Electromagnetic Field
,”
Proc. R. Soc. Lond. A
173
,
211
(
1939
).
12.
Fronsdal
,
C.
, “
Massless fields with integer spin
,”
Phys. Rev.
D18
,
3624
(
1978
).
13.
Galperin
,
A. S.
,
Ivanov
,
E. A.
,
Ogievetsky
,
V. I.
, and
Sokatchev
,
E.
, “
Gauge field geometry from complex and harmonic analyticities. Kahler and selfdual Yang-Mills cases
,”
Ann. Phys. (N.Y.)
185
,
1
(
1988
).
14.
Gibbons
,
G. W.
,
Gomis
,
J.
, and
Pope
,
C. N.
, “
Deforming the Maxwell-Sim algebra
,”
Phys. Rev. D
82
,
065002
(
2010
);
15.
Golfand
,
Y. A.
and
Likhtman
,
E. P.
,
JETP Lett.
13
,
323
(
1971
);
Golfand
,
Y. A.
and
Likhtman
,
E. P.
,
Pisma Zh. Eksp. Teor. Fiz.
13
,
452
(
1971
).
16.
Haag
,
R.
,
Lopuszanski
,
J. T.
, and
Sohnius
,
M.
, “
All possible generators of supersymmetries of the S matrix
,”
Nucl. Phys. B
88
,
257
(
1975
).
17.
Neveu
,
A.
and
Schwarz
,
J. H.
, “
Factorizable dual model of pions
,”
Nucl. Phys. B
31
,
86
(
1971
).
18.
Ramond
,
P.
, “
Dual theory for free fermions
,”
Phys. Rev. D
3
,
2415
(
1971
).
19.
Sagnotti
,
A.
and
Taronna
,
M.
, “
String lessons for higher-spin interactions
,”
Nucl. Phys.
B842
,
299
361
(
2011
);
20.
Savvidy
,
G.
, “
Non-Abelian tensor gauge fields: Generalization of Yang-Mills theory
,”
Phys. Lett. B
625
,
341
(
2005
).
21.
Savvidy
,
G.
, “
Extension of the Poincaré group and non-Abelian tensor gauge fields
,”
Int. J. Mod. Phys. A
25
,
5765
(
2010
);
22.
Singh
,
L. P. S.
and
Hagen
,
C. R.
, “
Lagrangian formulation for arbitrary spin. I. The boson case
,”
Phys. Rev.
D9
,
898
(
1974
).
23.
Soroka
,
D. V.
and
Soroka
,
V. A.
, “
Tensor extension of the Poincare algebra
,”
Phys. Lett. B
607
,
302
(
2005
);
24.
Volkov
,
D. V.
and
Akulov
,
V. P.
, “
Is the neutrino a goldstone particle?
,”
Phys. Lett. B
46
,
109
(
1973
).
25.
Wess
,
J.
and
Zumino
,
B.
, “
Supergauge transformations in four-dimensions
,”
Nucl. Phys. B
70
,
39
(
1974
).
26.
Wigner
,
E.
, “
On unitary representations of the inhomogeneous Lorentz group
,”
Ann. Math.
40
,
149
(
1939
).
27.
Wigner
,
E.
, “
Invariant quantum mechanical equations of motion
,” in
Theoretical Physics
, edited by A. Salam (
International Atomic Energy
,
Vienna
,
1963
), p.
59
85
.
28.
Yukawa
,
H.
, “
Quantum theory of non-local fields. Part I. Free fields
,”
Phys. Rev.
77
,
219
(
1950
).
You do not currently have access to this content.