We propose an effective algebraic method to investigate the dynamical symmetry of a 9-dimensional MICZ-Kepler problem by using the connection between this problem and a 16-dimensional isotropic harmonic oscillator. The dynamical symmetry group of the considered problem is found as SO(10,2). Explicit forms of all group elements are given. We also obtain all group elements in the algebraic representation of annihilation and creation operators that are very useful for concrete calculations.

1.
H.
Kleinert
, in
Lectures in Theoretical Physics
, edited by
W. E.
Brezin
, and
A. O.
Barut
,
XB
,
427
(
Gordon and Brack
,
NY
,
1968
).
2.
A. O.
Barut
and
G.
Bornzin
,
J. Math. Phys.
12
,
841
(
1971
).
3.
A. O.
Barut
and
R.
Raczka
,
Theory of Group Representations and Applications
(
PWN-Polish Scientific
,
Warszawa
,
1977
).
4.
C. N.
Yang
,
J. Math. Phys.
19
,
320
(
1978
).
5.
L. G.
Mardoyan
,
A. N.
Sissakian
, and
V. M.
Ter-Antonyan
,
Mod. Phys. Lett. A
14
,
1303
(
1999
).
6.
G.
Meng
,
J. Math. Phys.
48
,
032105
(
2007
).
7.
S.
Bellucci
,
F.
Toppan
, and
V.
Yeghikyan
,
J. Phys. A
43
,
045205
(
2010
).
8.
I.
Marquette
,
J. Math. Phys.
51
,
102105
(
2010
).
9.
V.-H.
Le
,
T.
Viloria
, and
A.-T.
Le
,
J. Phys. A
24
,
3021
(
1991
).
10.
M. V.
Pletyukhov
and
E. A.
Tolkachev
,
J. Phys. A
32
,
L249
(
1999
).
11.
V.-H.
Le
,
T.-S.
Nguyen
, and
N.-H.
Phan
,
J. Phys. A
42
,
175204
(
2009
).
12.
V.-H.
Le
and
T.-S.
Nguyen
,
J. Math. Phys.
52
,
03215
(
2011
).
13.
V.-H.
Le
and
L. I.
Komarov
,
Phys. Lett. A
177
,
121
(
1993
).
14.
E. G.
Kalnins
,
W.
Miller
, and
G. S.
Pogosyan
,
J. Math. Phys.
41
,
2629
(
2000
).
15.
A.
Hurwitz
,
Nachr. Ges. Wiss. Göttingen, Math.-Phys. KI.
71
,
309
(
1898
).
You do not currently have access to this content.