Two types of bilinear sums involving continuous dual q2- and q−2-Hahn polynomials with a particular choice of parameters are identified with bilinear sums of balanced basic hypergeometric 2ϕ2-series. A symmetry relation with respect to the eigenvalues of the polynomials is established for the sum τ(q2r, z) depending on two further complex parameters r and z. An explicit expression as a linear combination of four q2-Kampé de Fériet series is obtained for a bilateral bilinear sum of continuous dual q±2-Hahn polynomials. For generic parameters, application of the symmetry relation allows to describe the sum τ(q2r, z) in terms of eight q2-Kampé de Fériet series. Special cases include partial derivatives of the latter. Five term recurrence relations for τ(q2r, z) can be derived with respect to each of its parameters. Considerable simplifications are observed at z = −1 or z = q±1, where the sum τ(q2r, z) is essentially given by very well poised balanced 8W7-series with base q4 or q.

1.
R. A.
Askey
,
M.
Rahman
, and
S. K.
Suslov
,
J. Comp. Appl. Math.
68
,
25
(
1996
).
2.
H.
Rosengren
,
A New Quantum Interpretation of the Askey-Wilson Polynomials
,
Contemporary Mathematics
Vol.
254
(
American Mathematical Society
,
Providence
,
2000
)
371
.
3.
G.
Gasper
and
M.
Rahman
,
Basic Hypergeometric Series
, 2nd ed. (
Cambridge University Press
,
Cambridge
,
2004
).
4.
5.
G.
Gasper
and
M.
Rahman
,
SIAM J. Math. Anal.
17
,
970
(
1986
).
6.
H. T.
Koelink
and
J.
van der Jeugt
,
Constr. Approx.
15
,
481
(
1999
).
7.
M. E. H.
Ismail
and
D.
Stanton
,
Can. J. Math.
49
,
520
(
1997
).
8.
9.
R. M.
Gade
,
J. Math. Phys.
50
,
063503
(
2009
).
10.
E.
Koelink
and
J. V.
Stokman
,
Constructive Approx.
19
,
191
(
2003
).
11.
R.
Koekoek
and
R.
Swarttouw
, The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue, Report 98–17,
Delft University of Technology
, Delft (
1998
).
12.
E.
Koelink
and
H.
Rosengren
,
Rocky Mt J. Math.
32
,
703
(
2002
).
13.
E.
Koelink
and
J. V.
Stokman
,
Int. Math. Res. Notices
22
,
1203
(
2001
).
14.
M. E. H.
Ismail
,
Classical and Quantum Orthogonal Polynomials in One Variable
(
Cambridge University Press
,
Cambridge, England
,
2005
).
15.
M. E. H.
Ismail
and
M.
Rahman
,
Trans. Am. Math. Soc.
328
,
201
(
1991
).
16.
D. P.
Gupta
,
M. E. H.
Ismail
, and
D. R.
Masson
,
J. Comp. Appl. Math.
68
,
115
(
1996
).
You do not currently have access to this content.