In superspace a realization of

$\mathfrak {sl}_2$
sl2 is generated by the super Laplace operator and the generalized norm squared. In this paper, an inner product on superspace for which this representation is skew-symmetric is considered. This inner product was already defined for spaces of weighted polynomials (see [K. Coulembier, H. De Bie, and F. Sommen, Orthogonality of Hermite polynomials in superspace and Mehler type formulae, Proc. London Math. Soc. (accepted) arXiv:1002.1118]). In this article, it is proven that this inner product can be extended to the super Schwartz space, but not to the space of square integrable functions. Subsequently, the correct Hilbert space corresponding to this inner product is defined and studied. A complete basis of eigenfunctions for general orthosymplectically invariant quantum problems is constructed for this Hilbert space. Then the integrability of the
$\mathfrak {sl}_2$
sl2
-representation is proven. Finally, the Heisenberg uncertainty principle for the super Fourier transform is constructed.

1.
Ben Saïd
,
S.
, “
On the integrability of a representation of
$\mathfrak {sl}(2,\mathbb {R})$
sl(2,R)
,”
J. Funct. Anal.
250
(
2
),
249
(
2007
).
2.
Berezin
,
F.
,
Introduction to Algebra and Analysis with Anticommuting Variables
(
Moscow Univ. Press
,
Moscow
,
1983
).
3.
Böhm
,
A.
,
Boulder Lectures on Theoretical Physics
(
Gordon and Breach
,
New York
,
1967
), Vol. 10 A.
4.
Coulembier
,
K.
,
De Bie
,
H.
, and
Sommen
,
F.
, “
Integration in superspace using distribution theory
,”
J. Phys. A: Math. Theor.
42
,
395206
(
2009
).
5.
Coulembier
,
K.
,
De Bie
,
H.
, and
Sommen
,
F.
, “
Orthogonality of Hermite polynomials in superspace and Mehler type formulae
,” Proc. London Math. Soc. (accepted), arXiv:1002.1118.
6.
Coulembier
,
K.
,
De Bie
,
H.
, and
Sommen
,
F.
, “
Orthosymplectically invariant functions in superspace
,”
J. Math. Phys.
51
,
083504
(
2010
).
7.
Davies
,
E.
, “
Spectral theory and differential operators
,” in
Cambridge Studies in Advanced Mathematics 42
(
Cambridge University Press
,
Cambridge
,
1995
).
8.
De Bie
,
H.
,,“
Fourier transform and related integral transforms in superspace
,”
J. Math. Anal. Appl.
345
,
147
(
2008
).
9.
De Bie
,
H.
,,“
Schrödinger equation with delta potential in superspace
,”
Phys. Lett. A
372
,
4350
(
2008
).
10.
De Bie
,
H.
,
Eelbode
,
D.
, and
Sommen
,
F.
,,“
Spherical harmonics and integration in superspace II
,”
J. Phys. A: Math. Theor.
42
,
245204
(
2009
).
11.
De Bie
,
H.
and
Sommen
,
F.
,,“
Spherical harmonics and integration in superspace
,”
J. Phys. A: Math. Theor.
40
,
7193
(
2007
).
12.
De Bie
,
H.
and
Sommen
,
F.
,,“
Hermite and Gegenbauer polynomials in superspace using Clifford analysis
,”
J. Phys. A: Math. Theor.
40
,
10441
(
2007
).
13.
Delbourgo
,
R.
,
Jones
,
L. M.
, and
White
,
M.
,,“
Anharmonic Grassmann oscillator
,”
Phys. Rev. D
40
,
2716
(
1989
).
14.
Delbourgo
,
R.
,
Jones
,
L. M.
, and
White
,
M.
,,“
Anharmonic Grassmann oscillator II
,”
Phys. Rev. D
41
,
679
(
1990
).
15.
Desrosiers
,
P.
,
Lapointe
,
L.
, and
Mathieu
,
P.
,,“
Generalized Hermite polynomials in superspace as eigenfunctions of the supersymmetric rational CMS model
,”
Nucl. Phys. B
674
,
615
(
2003
).
16.
Dunne
,
G. V.
and
Halliday
,
I. G.
,,“
Negative-dimensional oscillators
,”
Nucl. Phys. B
308
,
589
(
1988
).
17.
Finkelstein
,
R.
and
Villasante
,
M.
, “
Grassmann oscillator
,”
Phys. Rev. D
33
,
1666
(
1986
) .
18.
Folland
,
G.
and
Sitaram
,
A.
,“
The uncertainty principle: a mathematical survey
,”
J. Fourier Anal. Appl.
3
,
207
(
1997
).
19.
Howe
,
R.
and
Tan
,
E.-C.
,
Nonabelian Harmonic Analysis
(
Springer-Verlag
,
New York
,
1992
).
20.
Nelson
,
E.
, “
Analytic vectors
,”
Ann. Math.
70
(
2
),
572
(
1959
).
21.
Reed
,
M.
and
Simon
,
B.
,
Methods of modern mathematical physics I: Functional analysis
(
Academic
,
New York-London
,
1972
).
22.
Reed
,
M.
and
Simon
,
B.
,
Methods of modern mathematical physics II: Fourier analysis, self-adjointness
(
Academic
,
New York-London
,
1975
).
23.
Rudolph
,
O.
, “
Super Hilbert spaces
,”
Commun. Math. Phys.
214
,
449
(
2000
).
24.
Schwartz
,
L.
,
Théorie des distributions
,
Publications de l’Institut de Mathématique de l’Université de Strasbourg
, No. IX-X (
Hermann
,
Paris
,
1966
).
25.
Simon
,
B.
,,“
Distributions and their Hermite expansions
,”
J. Math. Phys.
12
,
140
(
1971
).
26.
Zhang
,
R. B.
, “
Orthosymplectic Lie superalgebras in superspace analogues of quantum Kepler problems
,”
Commun. Math. Phys.
280
,
545
(
2008
).
You do not currently have access to this content.