We study various methods to generate ensembles of random density matrices of a fixed size N, obtained by partial trace of pure states on composite systems. Structured ensembles of random pure states, invariant with respect to local unitary transformations are introduced. To analyze statistical properties of quantum entanglement in bi-partite systems we analyze the distribution of Schmidt coefficients of random pure states. Such a distribution is derived in the case of a superposition of k random maximally entangled states. For another ensemble, obtained by performing selective measurements in a maximally entangled basis on a multi-partite system, we show that this distribution is given by the Fuss-Catalan law and find the average entanglement entropy. A more general class of structured ensembles proposed, containing also the case of Bures, forms an extension of the standard ensemble of structureless random pure states, described asymptotically, as N → ∞, by the Marchenko-Pastur distribution.
Skip Nav Destination
,
,
,
Article navigation
June 2011
Research Article|
June 09 2011
Generating random density matrices Available to Purchase
Karol Życzkowski;
Karol Życzkowski
a)
1Institute of Physics,
Jagiellonian University
, ul. Reymonta 4, 30-059 Kraków, Poland
2Centrum Fizyki Teoretycznej,
Polska Akademia Nauk
, Al. Lotników 32/44, 02-668 Warszawa, Poland
Search for other works by this author on:
Karol A. Penson;
Karol A. Penson
b)
3
Université Paris VI
, Laboratoire de Physique de la Matière Condensée (LPTMC), CNRS UMR 7600, t.13, 5ème ét. BC.121, 4, pl. Jussieu, F 75252 Paris Cedex 05, France
Search for other works by this author on:
Ion Nechita;
Ion Nechita
c)
4Department of Mathematics and Statistics,
University of Ottawa
, Ontario K1N6N5, Canada
5Laboratoire de Physique Théorique du CNRS, IRSAMC,
Université de Toulouse
, UPS, F-31062 Toulouse, France
Search for other works by this author on:
Benoît Collins
Benoît Collins
d)
4Department of Mathematics and Statistics,
University of Ottawa
, Ontario K1N6N5, Canada
6CNRS,
Institut Camille Jordan Université Lyon 1
, 43 Bd du 11 Novembre 1918, 69622 Villeurbanne, France
Search for other works by this author on:
Karol Życzkowski
1,2,a)
Karol A. Penson
3,b)
Ion Nechita
4,5,c)
Benoît Collins
4,6,d)
1Institute of Physics,
Jagiellonian University
, ul. Reymonta 4, 30-059 Kraków, Poland
2Centrum Fizyki Teoretycznej,
Polska Akademia Nauk
, Al. Lotników 32/44, 02-668 Warszawa, Poland
3
Université Paris VI
, Laboratoire de Physique de la Matière Condensée (LPTMC), CNRS UMR 7600, t.13, 5ème ét. BC.121, 4, pl. Jussieu, F 75252 Paris Cedex 05, France
4Department of Mathematics and Statistics,
University of Ottawa
, Ontario K1N6N5, Canada
5Laboratoire de Physique Théorique du CNRS, IRSAMC,
Université de Toulouse
, UPS, F-31062 Toulouse, France
6CNRS,
Institut Camille Jordan Université Lyon 1
, 43 Bd du 11 Novembre 1918, 69622 Villeurbanne, France
a)
Electronic mail: [email protected].
b)
Electronic mail: [email protected].
c)
Electronic mail: [email protected].
d)
Electronic mail: [email protected].
J. Math. Phys. 52, 062201 (2011)
Article history
Received:
December 09 2010
Accepted:
May 07 2011
Citation
Karol Życzkowski, Karol A. Penson, Ion Nechita, Benoît Collins; Generating random density matrices. J. Math. Phys. 1 June 2011; 52 (6): 062201. https://doi.org/10.1063/1.3595693
Download citation file:
Pay-Per-View Access
$40.00
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
Citing articles via
Well-posedness and decay structure of a quantum hydrodynamics system with Bohm potential and linear viscosity
Ramón G. Plaza, Delyan Zhelyazov
Cascades of scales: Applications and mathematical methodologies
Luigi Delle Site, Rupert Klein, et al.
Learning from insulators: New trends in the study of conductivity of metals
Giuseppe De Nittis, Max Lein, et al.
Related Content
On the Bures volume of separable quantum states
J. Math. Phys. (August 2009)
Optimal form of the Kretschmann–Schlingemann–Werner theorem for energy-constrained quantum channels and operations
J. Math. Phys. (November 2022)
Canonical coset parametrization and the Bures metric of the three-level quantum systems
J. Math. Phys. (January 2007)
Operational distance and fidelity for quantum channels
J. Math. Phys. (May 2005)
Generating random quantum channels
J. Math. Phys. (June 2021)