Nonrelativistic quantum mechanics and conformal quantum mechanics are deformed through a Jordanian twist. The deformed space coordinates satisfy the Snyder noncommutativity. The resulting deformed Hamiltonians are pseudo-Hermitian Hamiltonians of the type discussed by Mostafazadeh. The quantization scheme makes use of the so-called “unfolded formalism” discussed in previous works. A Hopf algebra structure, compatible with the physical interpretation of the coproduct, is introduced for the universal enveloping algebra of a suitably chosen dynamical Lie algebra (the Hamiltonian is contained among its generators). The multi-particle sector, uniquely determined by the deformed two-particle Hamiltonian, is composed of bosonic particles.
REFERENCES
1.
M.
Dubois-Violette
and G.
Launer
, Phys. Lett. B
245
, 175
(1990
).2.
C.
Ohn
, Lett. Math. Phys.
25
, 85
(1992
).3.
4.
V. G.
Drinfel'd
, Sov. Math. Dokl.
32
, 254
(1985
)5.
V. G.
Drinfel'd
, J. Sov. Math.
41
, 898
(1988
)6.
N.
Reshetikhin
, Lett. Math. Phys.
20
, 331
(1990
).7.
B.
Chakraborty
, Z.
Kuznetsova
, and F.
Toppan
, J. Math. Phys.
51
, 112102
(2010
);e-print arXiv:1002.1019 [hep-th].
8.
P. G.
Castro
, B.
Chakraborty
, R.
Kullock
, and F.
Toppan
, J. Math. Phys.
52
, 032102
(2011
);e-print arXiv:1012.5158 [hep-th].
9.
P. G.
Castro
, B.
Chakraborty
, and F.
Toppan
, J. Math. Phys.
49
, 082106
(2008
);e-print arXiv:0804.2936 [hep-th].
10.
A. P.
Balachandran
, G.
Mangano
, A.
Pinzul
, and S.
Vaidya
, Int. J. Mod. Phys. A
21
, 3111
(2006
);e-print arXiv:hep-th/0508002.
11.
V.
de Alfaro
, S.
Fubini
, and G.
Furlan
, Nuovo Cimento A
34
, 569
(1976
).12.
G.
Papadopoulos
, Class. Quantum Gra v.
17
, 3715
(2000
);e-print arXiv:hep-th/0002007.
13.
R.
Britto-Pacumio
, J.
Michelson
, A.
Strominger
, and A.
Volovich
, Lectures on superconformal quantum mechanics and multiblack hole moduli spaces
. In: Progress in string theory and M-theory (Kluwer, Dordrecht, 2001
), 235
–264
;e-print arXiv:hep-th/9911066.
14.
H. S.
Snyder
, Phys. Rev.
71
, 38
(1947
).15.
R.
Banerjee
, S.
Kulkarni
, and S.
Samanta
, J. High Energy Phys.
0605
, 077
(2006
);e-print arXiv:hep-th/0602151.
16.
S.
Ghosh
and P.
Pal
, Phys. Rev. D
75
, 105021
(2007
);e-print arXiv:hep-th/0702159.
17.
C.
Leiva
, Pramana
74
, 169
(2010
);e-print arXiv:0809.0066 [math-ph].
18.
S.
Meljanac
, D.
Meljanac
, A.
Samsarov
, and M.
Stojic
, Phys. Rev. D
83
, 065009
(2011
);e-print arXiv:1102.1655 [math-ph].
19.
A.
Mostafazadeh
, J. Phys. A
36
, 7081
(2003
);e-print arXiv:quant-ph/0304080.
20.
B.
Bagchi
and A.
Fring
, Phys. Lett. A
373
, 4307
(2009
);e-print arXiv:0907.5354 [hep-th].
21.
A.
Fring
, L.
Gouba
, and F. G.
Scholtz
, J. Phys. A
43
, 345401
(2010
);e-print arXiv:1003.3025 [hep-th].
22.
P. P.
Kulish
and N. Y.
Reshetikhin
, J. Sov. Math.
23
, 2435
(1983
)23.
M.
Jimbo
, Lett. Math. Phys.
10
, 63
(1985
).24.
P. P.
Kulish
and E.
Celeghini
, J. Phys. A
31
, L79
(1998
).25.
A.
Borowiec
, J.
Lukierski
, and V. N.
Tolstoy
, Mod. Phys. Lett. A
18
, 1157
(2003
);e-print arXiv:hep-th/0301033.
26.
T.
Kato
, Perturbation Theory for Linear Operators
(Springer-Verlag
, Berlin
, 1995
).27.
M.
Froissart
, Nuovo Cimento
14
, 197
(1959
).28.
A.
Mostafazadeh
, J. Math. Phys.
43
, 3944
(2002
);e-print arXiv:math-ph/0203005.
29.
© 2011 American Institute of Physics.
2011
American Institute of Physics
You do not currently have access to this content.