Nonrelativistic quantum mechanics and conformal quantum mechanics are deformed through a Jordanian twist. The deformed space coordinates satisfy the Snyder noncommutativity. The resulting deformed Hamiltonians are pseudo-Hermitian Hamiltonians of the type discussed by Mostafazadeh. The quantization scheme makes use of the so-called “unfolded formalism” discussed in previous works. A Hopf algebra structure, compatible with the physical interpretation of the coproduct, is introduced for the universal enveloping algebra of a suitably chosen dynamical Lie algebra (the Hamiltonian is contained among its generators). The multi-particle sector, uniquely determined by the deformed two-particle Hamiltonian, is composed of bosonic particles.

1.
M.
Dubois-Violette
and
G.
Launer
,
Phys. Lett. B
245
,
175
(
1990
).
2.
C.
Ohn
,
Lett. Math. Phys.
25
,
85
(
1992
).
3.
O.
Ogievetsky
,
Rend. Circ. Mat. Palermo (2) Suppl.
37
,
185
(
1993
).
4.
V. G.
Drinfel'd
,
Sov. Math. Dokl.
32
,
254
(
1985
)
V. G.
Drinfel'd
, [
Dokl. Akad. Nauk SSSR
283
,
1060
(
1985
)].
5.
V. G.
Drinfel'd
,
J. Sov. Math.
41
,
898
(
1988
)
V. G.
Drinfel'd
, [
Zap. Nauchn. Sem. LOMI
155
,
18
(
1986
)].
6.
N.
Reshetikhin
,
Lett. Math. Phys.
20
,
331
(
1990
).
7.
B.
Chakraborty
,
Z.
Kuznetsova
, and
F.
Toppan
,
J. Math. Phys.
51
,
112102
(
2010
);
e-print arXiv:1002.1019 [hep-th].
8.
P. G.
Castro
,
B.
Chakraborty
,
R.
Kullock
, and
F.
Toppan
,
J. Math. Phys.
52
,
032102
(
2011
);
e-print arXiv:1012.5158 [hep-th].
9.
P. G.
Castro
,
B.
Chakraborty
, and
F.
Toppan
,
J. Math. Phys.
49
,
082106
(
2008
);
e-print arXiv:0804.2936 [hep-th].
10.
A. P.
Balachandran
,
G.
Mangano
,
A.
Pinzul
, and
S.
Vaidya
,
Int. J. Mod. Phys. A
21
,
3111
(
2006
);
11.
V.
de Alfaro
,
S.
Fubini
, and
G.
Furlan
,
Nuovo Cimento A
34
,
569
(
1976
).
12.
G.
Papadopoulos
,
Class. Quantum Gra v.
17
,
3715
(
2000
);
13.
R.
Britto-Pacumio
,
J.
Michelson
,
A.
Strominger
, and
A.
Volovich
,
Lectures on superconformal quantum mechanics and multiblack hole moduli spaces
. In: Progress in string theory and M-theory (Kluwer, Dordrecht,
2001
),
235
264
;
14.
15.
R.
Banerjee
,
S.
Kulkarni
, and
S.
Samanta
,
J. High Energy Phys.
0605
,
077
(
2006
);
16.
S.
Ghosh
and
P.
Pal
,
Phys. Rev. D
75
,
105021
(
2007
);
e-print arXiv:0809.0066 [math-ph].
18.
S.
Meljanac
,
D.
Meljanac
,
A.
Samsarov
, and
M.
Stojic
,
Phys. Rev. D
83
,
065009
(
2011
);
e-print arXiv:1102.1655 [math-ph].
19.
A.
Mostafazadeh
,
J. Phys. A
36
,
7081
(
2003
);
20.
B.
Bagchi
and
A.
Fring
,
Phys. Lett. A
373
,
4307
(
2009
);
e-print arXiv:0907.5354 [hep-th].
21.
A.
Fring
,
L.
Gouba
, and
F. G.
Scholtz
,
J. Phys. A
43
,
345401
(
2010
);
e-print arXiv:1003.3025 [hep-th].
22.
P. P.
Kulish
and
N. Y.
Reshetikhin
,
J. Sov. Math.
23
,
2435
(
1983
)
P. P.
Kulish
and
N. Y.
Reshetikhin
, [
Zap. Nauchn. Sem. LOMI
101
,
101
(
1981
)].
23.
M.
Jimbo
,
Lett. Math. Phys.
10
,
63
(
1985
).
24.
P. P.
Kulish
and
E.
Celeghini
,
J. Phys. A
31
,
L79
(
1998
).
25.
A.
Borowiec
,
J.
Lukierski
, and
V. N.
Tolstoy
,
Mod. Phys. Lett. A
18
,
1157
(
2003
);
26.
T.
Kato
,
Perturbation Theory for Linear Operators
(
Springer-Verlag
,
Berlin
,
1995
).
27.
M.
Froissart
,
Nuovo Cimento
14
,
197
(
1959
).
28.
A.
Mostafazadeh
,
J. Math. Phys.
43
,
3944
(
2002
);
29.
M. E.
Sweedler
,
Hopf Algebras
(
Benjamin
,
New York
,
1969
).
You do not currently have access to this content.