We study matrix models in the β-ensemble by building on the refined recursion relation proposed by Chekhov and Eynard. We present explicit results for the first β-deformed corrections in the one-cut and the two-cut cases, as well as two applications to supersymmetric gauge theories: the calculation of superpotentials in

${\cal N}=1$
N=1 gauge theories, and the calculation of vevs of surface operators in superconformal
${\cal N}=2$
N=2
theories and their Liouville duals. Finally, we study the β-deformation of the Chern–Simons matrix model. Our results indicate that this model does not provide an appropriate description of the Ω-deformed topological string on the resolved conifold, and therefore that the β-deformation might provide a different generalization of topological string theory in toric Calabi–Yau backgrounds.

1.
Aganagic
,
M.
,
Klemm
,
A.
,
Mariño
,
M.
, and
Vafa
,
C.
, “
Matrix model as a mirror of Chern–Simons theory
,”
J. High Energy Phys.
0402
,
010
(
2004
);
2.
Aganagic
,
M.
,
Bouchard
,
V.
, and
Klemm
,
A.
, “
Topological strings and (almost) modular forms
,”
Commun. Math. Phys.
277
,
771
(
2008
);
3.
Alday
,
L. F.
and
Cirafici
,
M.
, “
Effective superpotentials via Konishi anomaly
,”
J. High Energy Phys.
0305
,
041
(
2003
);
4.
Alday
,
L. F.
and
Cirafici
,
M.
, “
Gravitational F-terms of SO/Sp gauge theories and anomalies
,”
J. High Energy Phys.
0309
,
031
(
2003
);
5.
Alday
,
L. F.
,
Gaiotto
,
D.
, and
Tachikawa
,
Y.
, “
Liouville correlation functions from four-dimensional gauge theories
,”
Lett. Math. Phys.
91
,
167
(
2010
);
6.
Alday
,
L. F.
,
Gaiotto
,
D.
,
Gukov
,
S.
,
Tachikawa
,
Y.
, and
Verlinde
,
H.
, “
Loop and surface operators in N = 2 gauge theory and Liouville modular geometry
,”
J. High Energy Phys.
1001
,
113
(
2010
);
e-print arXiv:0909.0945 [hep-th].
7.
Borot
,
G.
,
Eynard
,
B.
,
Majumdar
,
S.
, and
Nadal
,
C.
, e-print arXiv:1009.1945 [math-ph].
8.
Bouchard
,
V.
,
Klemm
,
A.
,
Mariño
,
M.
, and
Pasquetti
,
S.
, “
Remodeling the B-model
,”
Commun. Math. Phys.
287
,
117
(
2009
);
e-print arXiv:0709.1453 [hep-th].
9.
Bouchard
,
V.
,
Klemm
,
A.
,
Marino
,
M.
, and
Pasquetti
,
S.
, “
Topological open strings on orbifolds
,”
Commun. Math. Phys.
296
,
589
(
2010
);
e-print arXiv:0807.0597 [hep-th].
10.
Brézin
,
E.
,
Itzykson
,
C.
,
Parisi
,
G.
, and
Zuber
,
J. B.
, “
Planar diagrams
,”
Commun. Math. Phys.
59
,
35
(
1978
).
11.
Brézin
,
E.
and
Neuberger
,
H.
, “
Multicritical points of unoriented random surfaces
,”
Nucl. Phys. B
350
,
513
(
1991
).
12.
Brini
,
A.
and
Tanzini
,
A.
, “
Exact results for topological strings on resolved Y**p,q singularities
,”
Commun. Math. Phys.
289
,
205
(
2009
);
13.
Cachazo
,
F.
,
Intriligator
,
K. A.
, and
Vafa
,
C.
, “
A large N duality via a geometric transition
,”
Nucl. Phys. B
603
,
3
(
2001
);
14.
Chekhov
,
L.
, e-print arXiv:1009.5940 [math-ph].
15.
Chekhov
,
L.
and
Eynard
,
B.
, “
Matrix eigenvalue model: Feynman graph technique for all genera
,”
J. High Energy Phys.
0612
,
026
(
2006
);
16.
Chekhov
,
L.
and
Eynard
,
B.
, “
Hermitian matrix model free energy: Feynman graph technique for all genera
,”
J. High Energy Phys.
0603
,
014
(
2006
);
17.
Chekhov
,
L.
,
Eynard
,
B.
, and
Marchal
,
O.
, e-print arXiv:0911.1664 [math-ph].
18.
Di Francesco
,
P.
,
Ginsparg
,
P.
, and
Zinn-Justin
,
J.
, “
2-D Gravity and random matrices
,”
Phys. Rep.
254
,
1
(
1995
);
19.
Dijkgraaf
,
R.
and
Vafa
,
C.
, “
Matrix models, topological strings, and supersymmetric gauge theories
,”
Nucl. Phys. B
644
,
3
(
2002
);
20.
Dijkgraaf
,
R.
and
Vafa
,
C.
, e-print arXiv:hep-th/0208048.
21.
Dijkgraaf
,
R.
and
Vafa
,
C.
, e-print arXiv:0909.2453 [hep-th].
22.
Dimofte
,
T.
,
Gukov
,
S.
, and
Hollands
,
L.
, e-print arXiv:1006.0977 [hep-th].
23.
Eynard
,
B.
, “
Topological expansion for the 1-hermitian matrix model correlation functions
,”
J. High Energy Phys.
0411
,
031
(
2004
);
24.
Eynard
,
B.
and
Marchal
,
O.
, “
Topological expansion of the Bethe ansatz, and non-commutative algebraic geometry
,”
J. High Energy Phys.
0903
,
094
(
2009
);
e-print arXiv:0809.3367 [math-ph].
25.
Eynard
,
B.
,
Mariño
,
M.
, and
Orantin
,
N.
, “
Holomorphic anomaly and matrix models
,”
J. High Energy Phys.
0706
,
058
(
2007
);
26.
Eynard
,
B.
and
Orantin
,
N.
,
Commun. Number Theory Phys.
1
,
347
(
2007
).
27.
Eynard
,
B.
and
Orantin
,
N.
, e-print arXiv:0811.3531 [math-ph].
28.
Gaiotto
,
D.
, e-print arXiv:0904.2715 [hep-th].
29.
Garoufalidis
,
S.
and
Mariño
,
M.
, “
Universality and asymptotics of graph counting problems in non-orientable surfaces
,”
J. Combin. Theory. Ser. A
117
,
715
(
2010
);
e-print arXiv:0812.1195 [math.CO].
30.
Gopakumar
,
R.
and
Vafa
,
C.
, “
On the gauge theory/geometry correspondence
,”
Adv. Theor. Math. Phys.
3
,
1415
(
1999
);
31.
Harris
,
G. R.
and
Martinec
,
E. J.
, “
Unoriented strings and matrix ensembles
,”
Phys. Lett. B
245
,
384
(
1990
).
32.
Huang
,
M. x.
and
Klemm
,
A.
, “
Holomorphic anomaly in gauge theories and matrix models
,”
J. High Energy Phys.
0709
,
054
(
2007
);
33.
Huang
,
M. x.
and
Klemm
,
A.
, e-print arXiv:1009.1126 [hep-th].
34.
Intriligator
,
K. A.
,
Kraus
,
P.
,
Ryzhov
,
A. V.
,
Shigemori
,
M.
, and
Vafa
,
C.
, “
On low rank classical groups in string theory, gauge theory and matrix models
,”
Nucl. Phys. B
682
,
45
(
2004
);
35.
Iqbal
,
A.
,
Kozcaz
,
C.
, and
Vafa
,
C.
, “
The refined topological vertex
,”
J. High Energy Phys.
0910
,
069
(
2009
);
36.
Ita
,
H.
,
Nieder
,
H.
, and
Oz
,
Y.
, “
Perturbative computation of glueball superpotentials for SO(N) and USp(N)
,”
J. High Energy Phys.
0301
,
018
(
2003
);
37.
Itoyama
,
H.
and
Oota
,
T.
, “
Method of generating q-expansion coefficients for conformal block and N=2 Nekrasov function by beta-deformed matrix model
,”
Nucl. Phys.
B838
,
298
(
2010
);
e-print [arXiv:1003.2929 [hep-th]].
38.
Klemm
,
A.
,
Mariño
,
M.
, and
Rauch
,
M.
,
J. High Energy Phys.
004
,
1010
(
2010
).
39.
Klemm
,
A.
,
Mariño
,
M.
, and
Theisen
,
S.
, “
Gravitational corrections in supersymmetric gauge theory and matrix models
,”
J. High Energy Phys.
0303
,
051
(
2003
);
40.
Kozcaz
,
C.
,
Pasquetti
,
S.
, and
Wyllard
,
N.
, “
A & B model approaches to surface operators and Toda theories
,”
J. High Energy Phys.
1008
,
042
(
2010
);
e-print arXiv:1004.2025 [hep-th].
41.
Kraus
,
P.
,
Ryzhov
,
A. V.
, and
Shigemori
,
M.
, “
Loop equations, matrix models, and N = 1 supersymmetric gauge theories
,”
J. High Energy Phys.
0305
,
059
(
2003
);
42.
Kraus
,
P.
and
Shigemori
,
M.
, “
On the matter of the Dijkgraaf-Vafa conjecture
,”
J. High Energy Phys.
0304
,
052
(
2003
);
43.
Krefl
,
D.
and
Walcher
,
J.
, e-print arXiv:1007.0263 [hep-th].
44.
Mariño
,
M.
, “
Chern–Simons theory, matrix integrals, and perturbative three-manifold invariants
,”
Commun. Math. Phys.
253
,
25
(
2004
);
45.
Mariño
,
M.
, e-print arXiv:hep-th/0410165.
46.
Mariño
,
M.
, “
Open string amplitudes and large order behavior in topological string theory
,”
J. High Energy Phys.
0803
,
060
(
2008
);
47.
Mariño
,
M.
,
Schiappa
,
R.
, and
Weiss
,
M.
, “
Multi-instantons and multi-cuts
,”
J. Math. Phys.
50
,
052301
(
2009
);
e-print arXiv:0809.2619 [hep-th].
48.
Mironov
,
A.
,
Morozov
,
A.
, and
Shakirov
,
S.
, “
Conformal blocks as Dotsenko-Fateev integral discriminants
,”
Int. J. Mod. Phys.
A25
,
3173
(
2010
);
e-print arXiv:1001.0563 [hep-th];
Mironov
,
A.
,
Morozov
,
A.
, and
Shakirov
,
S.
, “
Matrix model conjecture for exact BS periods and Nekrasov functions
,”
J. High Energy Phys.
1002
,
030
(
2010
);
e-print arXiv:0911.5721 [hep-th].
49.
Morozov
,
A.
and
Shakirov
,
S.
, “
The matrix model version of AGT conjecture and C4-DV prepotential
,”
J. High Energy Phys.
1008
,
066
(
2010
);
e-print arXiv:1004.2917 [hep-th].
50.
Mulase
,
M.
and
Waldron
,
A.
, “
Duality of orthogonal and symplectic matrix integrals and quaternionic Feynman graphs
,”
Commun. Math. Phys.
240
,
553
(
2003
);
51.
Nakayama
,
Y.
, “
Liouville field theory: A decade after the revolution
,”
Int. J. Mod. Phys. A
19
,
2771
(
2004
);
52.
Nekrasov
,
N. A.
, “
Seiberg-Witten prepotential from instanton counting
,”
Adv. Theor. Math. Phys.
7
,
831
(
2004
);
53.
Nekrasov
,
N.
and
Okounkov
,
A.
, in “
The unity of mathematics
,”
Progr. Math.
244
,
525
, Birkhäuser, Boston;
54.
Schiappa
,
A.
and
Wyllard
,
N.
, e-print arXiv:0911.5337 [hep-th].
55.
Spreafico
,
M.
, “
On the Barnes double zeta and Gamma functions
,”
J. Number Theory
129
,
2035
(
2009
).
56.
Sulkowski
,
P.
, “
Matrix models for β-ensembles from Nekrasov partition functions
,”
J. High Energy Phys.
1004
,
063
(
2010
);
e-print arXiv:0912.5476 [hep-th].
57.
Tierz
,
M.
, “
Soft matrix models and Chern-Simons partition functions
,”
Mod. Phys. Lett. A
19
,
1365
(
2004
);
58.
This recursion has been reformulated in Refs. 17 and 25 in terms of “quantum algebraic curves,” but the original formulation in Ref. 15 is more useful for the purposes of this paper.
59.
This is not entirely guaranteed a priori, as the formalism of Refs. 14 and 15 applies in principle to polynomial or at most logarithmic potentials.
60.
This correction does not appear in the formulae of Ref. 15, see Ref. 14 for a careful statement of the recursion.
61.
In particular, it continues to hold true when we vary the choice of A and B cycles, thereby changing the very definition of dS(p, q) and k; for example, in the context of Seiberg-Witten curves, this would allow us to find expansions in any S-duality frame, also at strong coupling.
62.
In the Appendix A of Ref. 35, the expressions for the unoriented contributions to the free energy and the resolvent in terms of planar, oriented contributions, are only valid when k (the number of cuts) takes its maximum value d − 1 for a given potential.
63.
See also Ref. 23 for further developments.
64.
This form of the amplitude is dictated by an implicit choice of gluing along one of the unpreferred legs of the refined topological vertex. Other choices of gluing only result in minor differences in this particular case, which for the
$\mathcal {O}(1)$
O(1)
term in (4.37) amount to an overall rescaling by a factor of et; this obviously leaves unchanged the discussion about the comparison with the Chern-Simons matrix model computation.
You do not currently have access to this content.