The main aim of this research note is to establish two different types of integral representation formulae for the Kapteyn series of the first kind. The first one is a double definite integral expression, while the second type includes indefinite integral representation formula.

1.
Bessel
,
F. W.
, “
Analytische Auflösung der Keplerschen Aufgabe
,”
Abhandlungen der Mathematischen Klasse der Königlich Preußischen Akademie der Wissenschaften zu Berlin. Aus der Jahren
1816–1817
,
49
55
(
1819
).
2.
Chessin
,
A. S.
, “
Sur l'équation de Bessel avec second membre
,”
Compt. Rend.
135
,
678
679
(
1902
).
3.
Chessin
,
A. S.
, “
Sur une classe d'équations différentielles réductibles a l'équation de Bessel
,”
Compt. Rend.
136
,
1124
(
1903
).
4.
Citrin
,
D. S.
, “
Optical analogue for phase-sensitive measurements in quantum-transport experiments
,”
Phys. Rev. B
60
(
8
),
5659
(
1999
).
5.
Colwell
,
P.
, “
Bessel functions and Kepler's equation
,”
Am. Math. Monthly
99
(
1
),
45
(
1992
).
6.
Dominici
,
D.
, “
A new Kapteyn series
,”
Integral Transforms Spec. Funct.
18
,
409
(
2007
).
7.
Dominici
,
D.
, “
An application of Kapteyn series to a problem from queueing theory
,”
Proc. Appl. Math. Mech.
7
(
1
),
2050005
(
2007
).
8.
Dominici
,
D.
, “
On Taylor series and Kapteyn series of the first and second type
,” e-print arXiv:1012.3700v1.
9.
Eisinberg
,
A.
,
Fedele
,
G.
,
Ferrise
,
A.
, and
Frascino
,
D.
, “
On an integral representation of a class of Kapteyn (Fourier–Bessel) series: Kepler's equation, radiation problems and Meissel's expansion
,”
Appl. Math. Lett.
23
(
11
),
1331
(
2010
).
10.
Gradshteyn
,
I. S.
and
Ryzhik
,
I. M.
,
Table of Integrals, Series, and Products
, 6th ed. (
Academic
,
San Diego, CA
,
2000
).
11.
Jankov
,
D.
,
Pogány
,
T. K.
, and
Süli
,
E.
, “
On the coefficients of Neumann series of Bessel functions
,”
J. Math. Anal. Appl.
(
2011
).
12.
Kapteyn
,
W.
, “
Recherches sur les functions de Fourier–Bessel
,”
Ann. Sci. de l'École Norm. Sup.
10
,
91
(
1893
).
13.
Kapteyn
,
W.
, “
On an expansion of an arbitrary function in a series of Bessel functions
,”
Messenger Math.
35
,
122
(
1906
).
14.
Karamata
,
J.
,
Theory and Application of the Stieltjes Integral
,
Srpska Akademija Nauka, Posebna izdanja CLIV, Matematički institut
,
Knjiga I, Beograd
,
1949
(in Serbian)
15.
Lagrange
,
J. L.
, “
Sur le probléme de Kepler
,”
Mèm. de l'Acad. des Sci. Berlin
XXIV
,
204
(
1771
).
16.
Landau
,
L.
, “
Monotonicity and bounds on Bessel functions
,” in
Proceedings of the Symposium on Mathematical Physics and Quantum Field Theory
,
Berkeley, California
,
2000
, pp.
147
154
;
Landau
,
L.
,
Electron. J. Differ. Equations
4
(
2002
), Southwest Texas State University, San Marcos, TX.
17.
Lerche
,
I.
,
Schlickeiser
,
R.
, and
Tautz
,
R. C.
, “
Comment on a new derivation of the plasma susceptibility tensor for a hot magnetized plasma without infinite sums of products of Bessel functions
,”
Phys. Plasmas
15
(
2
),
024701
(
2008
).
18.
Lerche
,
I.
and
Tautz
,
R. C.
, “
A note on summation of Kapteyn series in astrophysical problems
,”
Astrophys. J.
665
,
1288
(
2007
).
19.
Lerche
,
I.
and
Tautz
,
R. C.
, “
Kapteyn series arising in radiation problems
,”
J. Phys. A
41
(
3
),
035202
(
2008
).
20.
Lerche
,
I.
,
Tautz
,
R. C.
, and
Citrin
,
D. S.
, “
Terahertz-sideband spectra involving Kapteyn series
,”
J. Phys. A
42
(
36
),
365206
(
2009
).
21.
Nielsen
,
N.
, “
Recherches sur les séries de fonctions cylindriques dues á C. Neumann et W. Kapteyn
,”
Ann. Sci. de l'École Norm. Sup.
18
,
39
(
1901
).
22.
Pogány
,
T. K.
and
Süli
,
E.
, “
Integral representation for Neumann series of Bessel functions
,”
Proc. Am. Math. Soc.
137
(
7
),
2363
(
2009
).
23.
Schott
,
G. A.
,
Electromagnetic Radiation and the Mechanical Reactions Arising From It, Being an Adams Prize Essay in the University of Cambridge
(
Cambridge University Press
,
Cambridge
,
1912
).
24.
Shalchi
,
A.
and
Schlickeiser
,
R.
, “
Cosmic ray transport in anisotropic magnetohydrodynamic turbulence III. Mixed magnetosonic and Alfvènic turbulence
,”
Astron. Astrophys.
420
(
3
),
799
(
2004
).
25.
Siemon
,
P.
, “
Über die Integrale einer nicht homogenen Differentialgleichung zweiter Ordnung
,” in
Programm der Luisienschuhle. Sechster Abschnitt. Differential- und Integralrechnung.
Capitel 5.
Gewöhnliche Differentialgleichungen
,
Berlin
,
1890
.
26.
Tautz
,
R. C.
and
Lerche
,
I.
, “
A review of procedures for summing Kapteyn series in mathematical physics
,”
Adv. Math. Phys.
2009
,
425164
(
2009
).
27.
Thomson
,
J. J.
, “
The magnetic properties of systems of corpuscles describing circular orbits
,”
Philos. Mag.
6
,
673
(
1903
).
28.
Watson
,
G. N.
,
A Treatise on the Theory of Bessel Functions
(
Cambridge University Press
,
Cambridge
,
1922
).
You do not currently have access to this content.