A generalized fractional trace identity and Hamiltonian structure of the fractional soliton equation hierarchy are presented by using the modified Riemann–Liouville derivative and exterior derivatives of fractional orders. Example of the fractional Kaup Newell (KN) soliton equation hierarchy and Hamiltonian system are considered, which is a new integrable hierarchy and possesses Hamiltonian structure.
REFERENCES
1.
S. G.
Samko
, A. A.
Kilbas
, and O. I.
Marichev
, Fractional Integrals and Derivatives Theory and Applications
(Gordon and Breach
, New York
, 1993
).2.
3.
G. M.
Zaslavsky
, Phys. Rep.
371
, 461
(2002
).4.
G. M.
Zaslavsky
, Hamiltonian Chaos and Fractional Dynamics
(Oxford University Press
, Oxford, UK
, 2005
).5.
V. E.
Tarasov
and G. M.
Zaslavsky
, Physica A
354
, 249
(2005
).6.
V. E.
Tarasov
, Chaos
14
, 123
(2004
).7.
V. E.
Tarasov
, Phys. Rev. E
71
, 011102
(2005
).8.
V. E.
Tarasov
, J. Phys.: Conf. Ser.
7
, 17
(2005
).9.
R.
Nigmatullin
, Phys. Status Solidi B
133
, 425
(1986
).10.
H.
Flanders
, Differential Forms with Applications to Physical Sciences
(Dover
, New York
, 1989
).11.
R.
Metzler
and J.
Klafter
, J. Phys. A
37
, 161
(2004
).12.
R.
Hilfer
, Applications of Fractional Calculus in Physics
(World Scientific
, Singapore
, 2000
).13.
A.
Carpinteri
and F.
Mainardi
Fractals and Fractional Calculus in Continuum Mechanics
(Springer
, New York
, 1997
).14.
G.
Jumarie
, Comput. Math. Appl.
51
, 1367
(2006
).15.
G.
Jumarie
, Appl. Math. Lett.
22
, 1659
(2009
).16.
G.
Jumarie
, Chaos, Soliton Fractals
32
, 969
(2007
);G.
Jumarie
, Chaos, Soliton Fractals
41
, 1590
(2009
).17.
G. C.
Wu
and E. W.
Lee
, Phys. Lett. A
374
, 2506
(2010
).18.
R.
Almeida
, A. B.
Malinowska
, and D. F.
Torres
, J. Math. Phys.
51
, 033503
(2010
).19.
S. K.
Cottrill
and M.
Naber
, J. Math. Phys.
42
, 2203
(2001
).20.
E.
Tarasov
, J. Phys. A
38
, 5929
(2005
).21.
B. A.
Dubrovin
, A. N.
Fomenko
, and S. P.
Novikov
, Modern Geometry-Methods and Applications
(Springer-Verlag
, New York
, 1992
), Part I.22.
G. T.
Tu
, J. Math. Phys.
30
, 330
(1989
).23.
M.
Wadati
, K.
Konno
, and Y. H.
Ichikawa
, J. Phys. Soc. Jpn.
47
, 1698
(1979
).24.
W. X.
Ma
and B.
Fuchssteiner
, Chaos, Solitons Fractals
7
, 1227
(1996
).25.
W. X.
Ma
and X. G.
Geng
, Phys. Lett. B
475
(1
), 56
(2000
).26.
W. X.
Ma
and B.
Fuchssteiner
, Phys. Lett. A
213
, 49
(1996
).27.
F. G.
Guo
and Y. F.
Zhang
, J. Math. Phys.
44
, 5793
(2003
).28.
W. X.
Ma
, Phys. Lett. A
316
, 72
(2003
).29.
W. X.
Ma
, J. Math. Phys.
46
, 033507
(2005
).30.
W. X.
Ma
, X. X.
Xu
, and Y. F.
Zhang
, J. Math. Phys.
47
, 053501
(2006
).31.
W. X.
Ma
, X. X.
Xu
, and Y. F.
Zhang
, Phys. Lett. A
351
, 125
(2006
).32.
F. J.
Yu
and H. Q.
Zhang
, Phys. Lett. A
353
, 326
(2006
).33.
Y. F.
Zhang
and E. G.
Fan
, Commun. Theo. Phys.
49
, 845
(2008
).34.
T. C.
Xia
and F. C.
You
, Chin. Phys.
16
(3
), 605
(2007
).35.
W. X.
Ma
and L.
Gao
, Mod. Phys. Lett. B
23
, 1847
(2009
).36.
D. J.
Kaup
and A. C.
Newell
, J. Math. Phys.
19
, 798
(1978
).© 2011 American Institute of Physics.
2011
American Institute of Physics
You do not currently have access to this content.