A common challenge in proving asymptotic stability of solitary waves is understanding the spectrum of the operator associated with the linearized flow. The existence of eigenvalues can inhibit the dispersive estimates key to proving stability. Following the work of Marzuola and Simpson [Nonlinearity52, 389 (2011)] https://doi.org/10.1088/0951-7715/24/2/003, we prove the absence of embedded eigenvalues for a collection of nonlinear Schrödinger equations, including some one and three dimensional supercritical equations, and the three dimensional cubic–quintic equation. Our results also rule out nonzero eigenvalues within the spectral gap and end point resonances. The proof is computer assisted as it depends on the signs of certain inner products which do not readily admit analytic representations. Our source code is available for verification at http://hdl.handle.net/1807/26121.

1.
C.
Sulem
and
P.
Sulem
,
The Nonlinear Schrödinger Equation: Self-Focusing and Wave Collapse
(
Springer
,
New York
,
1999
).
2.
M. I.
Weinstein
,
SIAM J. Math. Anal.
16
,
472
(
1985
).
3.
M. I.
Weinstein
,
Commun. Pure Appl. Math.
39
,
51
(
1986
).
4.
M.
Grillakis
,
J.
Shatah
, and
W.
Strauss
,
J. Funct. Anal.
74
,
160
(
1987
).
5.
M.
Grillakis
,
J.
Shatah
, and
W.
Strauss
,
J. Funct. Anal.
94
,
308
(
1990
).
6.
V. S.
Buslaev
and
G. S.
Perel′man
,
Am. Math. Soc. Transl.
164
,
75
(
1995
).
7.
V. S.
Buslaev
and
C.
Sulem
,
Ann. Inst. Henri Poincaré, Anal. Non Linéaire
20
,
419
(
2003
).
8.
S.
Cuccagna
,
Rev. Math. Phys.
15
,
877
(
2003
).
9.
I.
Rodnianski
,
W.
Schlag
, and
A.
Soffer
, arXiv:math/0309114v1 [math.AP].
11.
J.
Krieger
and
W.
Schlag
,
J. Am. Math. Soc.
19
,
815
(
2006
).
12.
M. B.
Erdogan
and
W.
Schlag
,
J. Anal. Math.
99
,
199
(
2006
).
13.
S.
Cuccagna
and
D.
Pelinovsky
,
J. Math. Phys.
46
,
053520
(
2005
).
14.
S.
Cuccagna
,
D.
Pelinovsky
, and
V.
Vougalter
,
Commun. Pure Appl. Math.
58
,
1
(
2005
).
15.
L.
Demanet
and
W.
Schlag
,
Nonlinearity
19
,
829
(
2006
).
16.
J. L.
Marzuola
and
G.
Simpson
,
Nonlinearity
24
,
389
(
2011
).
17.
F.
Merle
and
P.
Raphael
,
Ann. Math.
161
,
157
(
2005
).
18.
G.
Fibich
,
F.
Merle
, and
P.
Raphaël
,
Physica D
220
,
1
(
2006
).
19.
G.
Simpson
and
I.
Zwiers
, arXiv:1010.5864v1 [math.AP].
20.
G.
Perelman
, personal communication to
W.
Schlag
(September 15,
2007
).
21.
L.
Shampine
,
P.
Muir
, and
H.
Xu
,
J. Numer. Anal. Ind. Appl. Math.
1
,
201
(
2006
).
22.
L.
Shampine
,
Appl. Math. Comput.
138
,
99
(
2003
).
23.
L.
Shampine
,
I.
Gladwell
, and
S.
Thompson
,
Solving ODEs with MATLAB
(
Cambridge University Press
,
Cambridge, England
,
2003
).
You do not currently have access to this content.