We consider a class of deterministic local collisional dynamics, showing how to approximate them by means of stochastic models and then studying the fluctuations of the current of energy. We show first that the variance of the time-integrated current is finite and related to the conductivity by the Green–Kubo relation. Next we show that the law of the empirical average current satisfies a large deviations principle and compute explicitly the rate functional in a suitable scaling limit. We observe that this functional is not strictly convex.

1.
Asmussen
,
S.
,
Applied Probability and Queues
, 2nd ed., Application of Mathematics Vol. 51 (
Springer-Verlag
,
New York
,
2003
).
2.
Bertini
,
L.
,
De Sole
,
A.
,
Gabrielli
,
D.
,
Jona-Lasinio
,
G.
, and
Landim
,
C.
, “
Current fluctuations in stochastic lattice gases
,”
Phys. Rev. Lett.
94
,
030601
(
2005
).
3.
Bertini
,
L.
,
De Sole
,
A.
,
Gabrielli
,
D.
,
Jona-Lasinio
,
G.
, and
Landim
,
C.
, “
Non-equilibrium current fluctuations in stochastic lattice gases
,”
J. Stat. Phys.
123
(
2
),
237
(
2006
).
4.
Bertini
,
L.
,
De Sole
,
A.
,
Gabrielli
,
D.
,
Jona-Lasinio
,
G.
, and
Landim
,
C.
, “
Towards a nonequilibrium thermodynamics: a self-contained macroscopic description of driven diffusive systems
,”
J. Stat. Phys.
135
,
857
(
2009
).
5.
Bodineau
,
T.
and
Derrida
,
B.
, “
Current fluctuations in non-equilibrium diffusive systems: an additivity principle
,”
Phys. Rev. Lett.
92
,
180601
(
2004
).
6.
Bodineau
,
T.
and
Derrida
,
B.
, “
Cumulants and large deviations of the current through non-equilibrium steady states
,”
C. R. Phys.
8
,
540
(
2007
).
7.
Bodineau
,
T.
and
Derrida
,
B.
, “
Distribution of current in non-equilibrium diffusive systems and phase transitions
,”
Phys. Rev. E
72
,
066110
(
2005
).
8.
Comets
,
F.
and
Gantert
,
N.
, and
Zeitouni
,
O.
, “
Quenched, annealed and functional large deviations for one-dimensional random walk in random environment
,”
Probab. Theory Relat. Fields
118
,
65
(
2000
).
9.
Davis
,
M. H. A.
,
Markov Models and Optimization
, Monographs on Statistics and Applied Probability Vol. 49 (
Chapman and Hall
,
London
,
1993
).
10.
Dembo
,
A.
and
Zeitouni
,
O.
,
Large Deviations Techniques and Applications
(
Springer-Verlag, Berlin, 2009
).
11.
Eckmann
,
J. P.
and
Young
,
L. S.
, “
Temperature profiles in Hamiltonian heat conduction
,”
Europhys. Lett.
68
790
(
2004
).
12.
Eckmann
,
J. P.
and
Young
,
L. S.
, “
Nonequilibrium energy profiles for a class of 1-D models
,”
Commun. Math. Phys.
262
,
237
(
2006
).
13.
Gaspard
,
P.
and
Gilbert
,
T.
, “
Heat conduction and Fourier's law by consecutive local mixing and thermalization
,”
Phys. Rev. Lett.
101
,
020601
(
2008
).
14.
Gilbert
,
T.
and
Lefevere
,
R.
Heat conductivity from molecular chaos hypothesis in locally confined billiard systems
,”
Phys. Rev. Lett.
101
,
200601
(
2008
).
15.
Greven
,
A.
and
den Hollander
,
F.
, “
Large deviations for a random walk in a random environment
,”
Ann. Probab.
22
,
1381
(
1994
).
16.
Jacobsen
,
M.
,
Point Process Theory and Applications: Marked Point and Piecewise Deterministic Processes
(
Birkhäuser
,
Boston
,
2005
).
17.
Larralde
,
H.
Leyvraz
,
F.
, and
Mejia-Monasterio
,
C.
, “
Transport properties of a modified Lorentz gas
,”
J. Stat. Phys.
113
,
197
(
2003
).
18.
Lefevere
,
R.
and
Zambotti
,
L.
, “
Hot scatterers and tracers for the transfer of heat in collisional dynamics
,”
J. Stat. Phys.
139
,
686
(
2010
).
19.
Lefevere
,
R.
Mariani
,
M.
, and
Zambotti
,
L.
, “
Macroscopic fluctuations theory of aerogel dynamics
,”
J. Stat. Mech.: Theory Exp.
2010
,
L12004
.
20.
Lin
,
K. K.
and
Young
,
L. S.
, “
Nonequilibrium steady states for certain Hamiltonian models
,”
J. Stat. Phys.
139
,
630
(
2010
).
21.
Mejia-Monasterio
,
C.
,
Larralde
,
H.
, and
Leyvraz
,
F.
, “
Coupled normal heat and matter transport in a simple model system
,”
Phys. Rev. Lett.
86
,
5417
(
2001
).
22.
Prosen
,
T.
and
Campbell
,
D. K.
,“
Normal and anomalous heat transport in one-dimensional classical lattices
,”
Chaos
15
,
015117
(
2005
).
You do not currently have access to this content.