We consider a class of deterministic local collisional dynamics, showing how to approximate them by means of stochastic models and then studying the fluctuations of the current of energy. We show first that the variance of the time-integrated current is finite and related to the conductivity by the Green–Kubo relation. Next we show that the law of the empirical average current satisfies a large deviations principle and compute explicitly the rate functional in a suitable scaling limit. We observe that this functional is not strictly convex.
REFERENCES
1.
Asmussen
, S.
, Applied Probability and Queues
, 2nd ed., Application of Mathematics Vol. 51 (Springer-Verlag
, New York
, 2003
).2.
Bertini
, L.
, De Sole
, A.
, Gabrielli
, D.
, Jona-Lasinio
, G.
, and Landim
, C.
, “Current fluctuations in stochastic lattice gases
,” Phys. Rev. Lett.
94
, 030601
(2005
).3.
Bertini
, L.
, De Sole
, A.
, Gabrielli
, D.
, Jona-Lasinio
, G.
, and Landim
, C.
, “Non-equilibrium current fluctuations in stochastic lattice gases
,” J. Stat. Phys.
123
(2
), 237
(2006
).4.
Bertini
, L.
, De Sole
, A.
, Gabrielli
, D.
, Jona-Lasinio
, G.
, and Landim
, C.
, “Towards a nonequilibrium thermodynamics: a self-contained macroscopic description of driven diffusive systems
,” J. Stat. Phys.
135
, 857
(2009
).5.
Bodineau
, T.
and Derrida
, B.
, “Current fluctuations in non-equilibrium diffusive systems: an additivity principle
,” Phys. Rev. Lett.
92
, 180601
(2004
).6.
Bodineau
, T.
and Derrida
, B.
, “Cumulants and large deviations of the current through non-equilibrium steady states
,” C. R. Phys.
8
, 540
(2007
).7.
Bodineau
, T.
and Derrida
, B.
, “Distribution of current in non-equilibrium diffusive systems and phase transitions
,” Phys. Rev. E
72
, 066110
(2005
).8.
Comets
, F.
and Gantert
, N.
, and Zeitouni
, O.
, “Quenched, annealed and functional large deviations for one-dimensional random walk in random environment
,” Probab. Theory Relat. Fields
118
, 65
(2000
).9.
Davis
, M. H. A.
, Markov Models and Optimization
, Monographs on Statistics and Applied Probability Vol. 49 (Chapman and Hall
, London
, 1993
).10.
Dembo
, A.
and Zeitouni
, O.
, Large Deviations Techniques and Applications
(Springer-Verlag, Berlin, 2009
).11.
Eckmann
, J. P.
and Young
, L. S.
, “Temperature profiles in Hamiltonian heat conduction
,” Europhys. Lett.
68
790
(2004
).12.
Eckmann
, J. P.
and Young
, L. S.
, “Nonequilibrium energy profiles for a class of 1-D models
,” Commun. Math. Phys.
262
, 237
(2006
).13.
Gaspard
, P.
and Gilbert
, T.
, “Heat conduction and Fourier's law by consecutive local mixing and thermalization
,” Phys. Rev. Lett.
101
, 020601
(2008
).14.
Gilbert
, T.
and Lefevere
, R.
“Heat conductivity from molecular chaos hypothesis in locally confined billiard systems
,” Phys. Rev. Lett.
101
, 200601
(2008
).15.
Greven
, A.
and den Hollander
, F.
, “Large deviations for a random walk in a random environment
,” Ann. Probab.
22
, 1381
(1994
).16.
Jacobsen
, M.
, Point Process Theory and Applications: Marked Point and Piecewise Deterministic Processes
(Birkhäuser
, Boston
, 2005
).17.
Larralde
, H.
Leyvraz
, F.
, and Mejia-Monasterio
, C.
, “Transport properties of a modified Lorentz gas
,” J. Stat. Phys.
113
, 197
(2003
).18.
Lefevere
, R.
and Zambotti
, L.
, “Hot scatterers and tracers for the transfer of heat in collisional dynamics
,” J. Stat. Phys.
139
, 686
(2010
).19.
Lefevere
, R.
Mariani
, M.
, and Zambotti
, L.
, “Macroscopic fluctuations theory of aerogel dynamics
,” J. Stat. Mech.: Theory Exp.
2010
, L12004
.20.
Lin
, K. K.
and Young
, L. S.
, “Nonequilibrium steady states for certain Hamiltonian models
,” J. Stat. Phys.
139
, 630
(2010
).21.
Mejia-Monasterio
, C.
, Larralde
, H.
, and Leyvraz
, F.
, “Coupled normal heat and matter transport in a simple model system
,” Phys. Rev. Lett.
86
, 5417
(2001
).22.
Prosen
, T.
and Campbell
, D. K.
,“Normal and anomalous heat transport in one-dimensional classical lattices
,” Chaos
15
, 015117
(2005
).© 2011 American Institute of Physics.
2011
American Institute of Physics
You do not currently have access to this content.