The d’Alembert–Lagrange principle (DLP) is designed primarily for dynamical systems under ideal geometric constraints. Although it can also cover linear-velocity constraints, its application to nonlinear kinematic constraints has so far remained elusive, mainly because there is no clear method whereby the set of linear conditions that restrict the virtual displacements can be easily extracted from the equations of constraint. On recognition that the commutation rule traditionally accepted for velocity displacements in Lagrangian dynamics implies displaced states that do not satisfy the kinematic constraints, we show how the property of possible displaced states can be utilized ab initio so as to provide an appropriate set of linear auxiliary conditions on the displacements, which can be adjoined via Lagrange's multipliers to the d’Alembert–Lagrange equation to yield the equations of state, and also new transpositional relations for nonholonomic systems. The equations of state so obtained for systems under general nonlinear velocity and acceleration constraints are shown to be identical with those derived (in Appendix  A) from the quite different Gauss principle. The present advance therefore solves a long outstanding problem on the application of DLP to ideal nonholonomic systems and, as an aside, provides validity to axioms as the Chetaev rule, previously left theoretically unjustified. A more general transpositional form of the Boltzmann–Hamel equation is also obtained.

1.
J. M.
Maruskin
and
A. M.
Bloch
, “
The Boltzmann–Hamel equations for the optimal control of mechanical systems with nonholonomic constraints
,”
Int. J. Robust Nonlinear Control
21
(4),
373
(
2011
).
2.
C.
Cronström
and
T.
Raita
,
J. Math. Phys.
50
,
042901
(
2009
).
3.
J.
Grabowski
,
M. de
León
,
J. C.
Marrero
, and
D. Martín de
Diego
,
J. Math. Phys.
50
,
013520
(
2009
).
4.
O. E.
Fernandez
and
A. M.
Bloch
,
J. Phys. A
41
,
344005
(
2008
).
5.
H.
Cendra
and
S.
Grillo
,
J. Math. Phys.
47
,
022902
(
2006
).
6.
M. R.
Flannery
,
Am. J. Phys.
73
,
265
(
2005
).
7.
M. de
León
,
D. M. de
Diego
, and
A.
Santamarí-Merino
,
J. Math. Phys.
45
,
1042
(
2004
).
8.
A. M.
Bloch
,
Nonholonomic Mechanics and Control
(
Springer
,
New York
,
2003
).
9.
C.-M.
Marle
,
Rep. Math. Phys.
42
,
211
(
1998
).
10.
B.
Tondu
and
S. A.
Bazaz
,
Int. J. Robot. Res.
18
,
893
(
1999
).
11.
H.
Goldstein
,
C.
Poole
, and
J.
Safko
,
Classical Dynamics
(
Addison-Wesley
,
New York
,
2003
).
12.
J. L.
Lagrange
,
Mécanique Analytique
, 1st ed. (
Courcier
,
Paris
,
1788
) [
A.
Boissonnade
and
V. N.
Vagliente
, 2nd ed. (
Kluwer
,
Dordrecht
,
1997
)].
13.
J.
d’Alembert
,
Traité de Dynamique
(David,
Paris
,
1743
).
14.
E. T.
Whittaker
,
A treatise on the Analytical Dynamics of Particles and Rigid Bodies
, 4th ed. (
Cambridge University Press
,
Cambridge, London
,
1965
), p.
255
.
15.
L. A.
Pars
,
A Treatise on Analytical Dynamics
(
Wiley
,
New York
,
1965
); reprinted (
Oxbow
,
Woodbridge, Connecticut
,
1979
).
16.
D. T.
Greenwood
,
Advanced Dynamics
(
Cambridge University Press
,
2003
), pp.
39
296
.
17.
R. M.
Rosenberg
,
Analytical Dynamics of Discrete Systems
(
Plenum
,
New York
,
1977
), pp.
142
145
.
18.
F.
Gantmacher
,
Lectures in Analytical Mechanics
(
Mir Publishers
,
Moscow
,
1970
).
19.
H.
Hertz
,
Die Prinzipen Der Mechanik in Neuem Zusammenhange Dargestellt
,
Gesammelte Werke Band III
(
Barth
,
Leipzig
,
1894
) [
The Principles of Mechanics Presented in a New Form
(
Dover
,
New York
,
1956
)].
20.
C. F.
Gauss
,
J. Reine Angew. Math.
4
,
232
(
1829
).
21.
C.
Lanczos
,
The Variational Principles of Mechanics
, 4th ed. (
Dover
,
New York
,
1970
), pp.
92
106
.
22.
J. G.
Papastavridis
,
Analytical Mechanics: Advanced Treatise
(
Oxford University Press
,
New York
,
2002
), pp.
312
323
,
911
930
.
23.
J. W.
Gibbs
,
Am. J. Math.
2
,
49
(
1879
).
24.
P. E. B.
Jourdain
,
Q. J. Pure Appl. Math.
40
,
153
(
1909
).
25.
M. R.
Flannery
, “
Gibbs and Jourdain principles revisited for ideal nonholonomic systems
,” (unpublished).
26.
P.
Appell
,
Dynamique des Système, Mécanique Analytique
,
Traité de Mécanique Rationelle Vol. 2
(
Gauthier-Villars
,
Paris
,
1953
);
Acad. Sci., Paris, C. R.
129
,
459
(
1899
).
27.
P.
Appell
,
Acad. Sci., Paris, C. R.
152
,
1197
(
1911
).
28.
J. R.
Ray
,
Am. J. Phys.
40
,
179
(
1972
).
29.
E. A.
Desloge
,
Am. J. Phys.
56
,
841
(
1988
).
30.
J. F.
Cariñena
and
M. F.
Rañada
,
J. Phys. A
26
,
1335
(
1993
).
31.
R.
Abraham
and
J. E.
Marsden
,
Foundations of Mechanics
, 2nd ed. (
Addison-Wesley
,
Reading, MA
,
1994
).
32.
S.
Benenti
,
Rend. Semin. Mat. Torino
54
,
203
(
1996
).
33.
34.
D. J.
Saunders
,
W.
Sarlet
, and
F.
Cantrijn
,
J. Phys. A
29
,
42654274
(
1996
).
35.
M. de
León
,
J. C.
Marrero
, and
D. M. de
Diego
,
J. Phys. A
30
,
1167
(
1997
).
36.
J.
Cortés
,
M. de
León
,
D. M. de
Diego
, and
S.
Martínez
,
SIAM J. Control Optim.
41
,
1389
(
2002
).
37.
N. G.
Chetaev
,
Izv. Fiz.-Mat. Obsc. Kaz. Univ.
6
,
68
(
1933
).
38.
E. J.
Saletan
and
A. H.
Cromer
,
Am. J. Phys.
38
,
892
(
1970
).
39.
J. R.
Ray
,
Am. J. Phys.
34
,
406
(
1966
);
Erratum
34
,
1202
(
1966
).
40.
V. V.
Kozlov
,
Sov. Phys. Dokl.
28
,
735
(
1983
).
41.
V. I.
Arnold
,
V. V.
Kozlov
, and
A. I.
Nejshtadt
, “
Mathematical aspects of classical and celestial mechanics
,” in
Dynamical Systems 11: Encyclopaedia of Mathematical Sciences
(
Springer
,
Berlin
,
1988
).
42.
G.
Zampieri
,
J. Differ. Equations
163
,
335
(
2000
).
43.
H.
Cendra
,
A.
Ibort
,
M. de
León
, and
D. M. de
Diego
,
J. Math. Phys.
45
,
2785
(
2004
).
44.
S. M.
Li
and
J.
Berakdar
,
Rep. Math. Phys.
63
,
179
(
2009
).
45.
S. M.
Li
and
J.
Berakdar
,
Rep. Math. Phys.
60
,
107
(
2007
).
46.
E.
Bibbona
,
L.
Fatibene
, and
M.
Francaviglia
,
J. Math. Phys.
48
,
032903
(
2007
).
47.
F.
Cardin
and
M.
Favretti
,
J. Geom. Phys.
18
,
295
(
1996
).
49.
J. I.
Neimark
and
N. A.
Fufaev
,
Dynamics of Nonholonomic Systems
,
Translations of Mathematical Monographs Vol. 33
(
American Mathematical Society
,
Providence
,
1972
), pp
120
143
, and references therein.
50.
J. I.
Neimark
and
N. A.
Fufaev
,
J. Appl. Math. Mech.
24
,
1541
(
1960
).
51.
H.
Rund
,
The Hamilton–Jacobi Theory in the Calculus of Variations
(
Van Nostrand
,
New York
,
1966
), p.
358
.
52.
M. R.
Flannery
, “
The elusive d’Alembert–Lagrange dynamics of nonholonomic systems
,”
Am. J. Phys.
(in press).
You do not currently have access to this content.