In this paper a new approach combining the features of the homotopy concept with variational approach is proposed to find accurate analytical solutions for nonlinear oscillators with and without a fractional power restoring force. Since the first-order approximation leads to very accurate results, comparisons with other results are presented to show the effectiveness of this method. The validity of the method is independent of whether or not there exist small or large parameters in the considered nonlinear equations; the obtained results prove the validity and efficiency of the method, which can be easily extended to other strongly nonlinear problems. At the end we compare our procedure with the optimal homotopy perturbation method.
REFERENCES
1.
F. O.
Zengin
, M. O.
Kaya
, and S. A.
Demirbag
, Int. J. Nonlinear Sci. Numer. Simul.
9
, 267
(2008
).2.
S. A.
Demirbag
, M. O.
Kaya
, and F. O.
Zengin
, Int. J. Nonlin. Sci. Numer. Simul.
10
(1
), 27
(2009
).3.
4.
J. H.
He
, Int. J. Nonlinear. Mech.
35
, 37
(2000
).5.
6.
A.
Fereidoon
, Y.
Rostamiyan
, M.
Akbarzade
, and D. D.
Ganji
, Arch. Appl. Mech.
80
(6
), 641
(2010
).7.
G. A.
Afrouzi
, D. D.
Ganji
, and R. A.
Talarposhti
, Int. J. Nonlinear Sci. Numer.
10
, 301
(2009
).8.
9.
J. H.
He
, Chaos, Solitons Fractals
34
, 1430
(2007
).10.
D. D.
Ganji
, N. R.
Malidarreh
, and M.
Akbarzade
, Acta. Appl. Math.
108
, 353
(2009
).11.
H.
Pashaei
, D. D
Ganji
, and M.
Akbarzade
, Prog. Electromagn. Res. M
2
, 47
(2008
).12.
M.
Akbarzade
, D. D.
Ganji
, and H.
Pashaei
, Prog. Electromagn. Res. C
3
, 57
(2008
).13.
14.
15.
16.
J. H.
He
, Int. J. Mod. Phys. B
20
, 1141
(2006
).17.
18.
J. H.
He
, Non-Perturbative Methods for Strongly Nonlinear Problems
, dissertation (De-Verlag
, Berlin
, 2006
).19.
J. H.
He
, Phys. Lett. A
350
, 87
(2006
).20.
21.
L.
Xu
, J. Sound Vib.
302
(1–2
), 178
(2007
).© 2011 American Institute of Physics.
2011
American Institute of Physics
You do not currently have access to this content.