This paper concerns the asymptotic behavior of the solutions of a singularly perturbed quasilinear system involving a small parameter λ and a quadratic form gM(curl H) = 〈Mcurl H, curl H〉. This system arises in the mathematical theory of nucleation of instability of the Meissner states of anisotropic superconductors, and the location of the maximum points of the quadratic form suggests the location where instability begins to nucleate. The existence and regularity of the solutions of this system for fixed λ have been established by Pan [“A quasilinear system involving the operator curl,” Calculus Var. Partial Differ. Equ. 36, 317 (2009)]. In this paper we find an optimal bound of the boundary data for the solvability for all small λ and find the asymptotic behavior of the solutions as λ goes to zero. In particular it is proved that the maximum points of the quadratic form approach a point on the domain boundary where the tangential component of the boundary datum is the maximal. In the special case where the applied magnetic field has constant direction and constant magnitude, the maximum points of the quadratic form approach a point on the domain boundary where the applied field is tangential to the surface.

1.
Agmon
,
S.
,
Douglis
,
A.
, and
Nirenberg
,
L.
, “
Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions, I, II
,”
Commun. Pure Appl. Math.
12
,
623
(
1959
);
Agmon
,
S.
,
Douglis
,
A.
, and
Nirenberg
,
L.
,
Commun. Pure Appl. Math.
17
,
35
(
1964
).
2.
Auchmuty
,
G.
, and
Alexander
,
J. C.
, “
L2-well-posedness of 3d-div-curl boundary value problems
,”
Q. Appl. Math.
63
,
479
(
2005
).
3.
Auchmuty
,
G.
, and
Alexander
,
J. C.
, “
Finite energy solutions of mixed 3D div-curl systems
,”
Q. Appl. Math.
64
,
335
(
2006
).
4.
Bates
,
P.
, and
Pan
,
X. B.
, “
Nucleation of instability of the Meissner state of 3-dimensional superconductors
,”
Commun. Math. Phys.
276
(
3
),
571
(
2007
).
5.
Berestycki
,
H.
,
Bonnet
,
A.
, and
Chapman
,
S. J.
, “
A semi-elliptic system arising in the theory of type-II superconductivity
,”
Commun. Appl. Nonlinear Anal.
1
(
3
),
1
(
1994
).
6.
Bonnet
,
A.
,
Chapman
,
S. J.
, and
Monneau
,
R.
, “
Convergence of Meissner minimizers of the Ginzburg-Landau energy of superconductivity as κ → +∞
,”
SIAM J. Math. Anal.
31
,
1374
(
2000
).
7.
Bolik
,
J.
, and
von Wahl
,
W.
, “
Estimating ∇u in terms of div u, curl u, either (ν, u) or ν × u and the topology
,”
Math. Methods Appl. Sci.
20
,
737
(
1997
).
8.
Calderón
,
A. P.
, and
Zygmund
,
A.
, “
On the existence of certain singular integrals
,”
Acta Math.
88
,
85
(
1952
).
9.
Chapman
,
S. J.
, “
Superheating fields of type II superconductors
,”
SIAM J. Appl. Math.
55
,
1233
(
1995
).
10.
Chapman
,
S. J.
, “
Nucleation of vortices in type II superconductors in increasing magnetic fields
,”
Appl. Math. Lett.
10
(
2
),
29
(
1997
).
11.
Chapman
,
S. J.
,
Howison
,
S. D.
, and
Ockendon
,
J. R.
, “
Macroscopic models for superconductivity
,”
SIAM Rev.
34
,
529
(
1992
).
12.
Chmpbell
,
L. J.
,
Doria
,
M. M.
, and
Kogan
,
V. G.
, “
Vortex lattice structures in uniaxial superconductors
,”
Phys. Rev. B
38
(
4
),
2439
(
1988
).
13.
Dautray
,
R.
and
Lions
,
J.-L.
,
Mathematical Analysis and Numerical Methods for Science and technology
(
Springer-Verlag
,
New York
,
1990
), Vol.
3
.
14.
del Pino
,
M.
,
Felmer
,
P.
, and
Steinberg
,
P.
, “
Boundary concentration for eigenvalue problems related to the onset of superconductivity
,”
Commun. Math. Phys.
210
,
413
(
2000
).
15.
Du
,
Q.
,
Gunzburger
,
M.
, and
Peterson
,
J.
, “
Analysis and approximation of the Ginzburg-Landau model of superconductivity
SIAM Rev.
34
,
45
(
1992
).
16.
Fiorenza
,
R.
, “
Sui problemi di derivata obliqua per le equazioni ellittiche
,”
Ric. Mat.
8
,
83
(
1959
).
17.
Fournais
,
S.
and
Helffer
,
B.
,
Spectral Methods in Surface Superconductivity
(
Birkhäuser
, Boston-Basel-Berlin,
2010
).
18.
Gilbarg
,
D.
and
Trudinger
,
N.
,
Elliptic Partial Differential Equations of Second Order
, 2nd ed. (
Springer
,
Berlin
,
1983
).
19.
Helffer
,
B.
and
Pan
,
X. B.
, “
Upper critical field and location of surface nucleation of superconductivity
,”
Ann. Inst. Henri Poincare, Anal. Non Lineaire
20
,
145
(
2003
).
20.
Kogan
,
V. G.
, “
London approach to anisotropic type II superconductors
,”
Phys. Rev. B
24
(
3
),
1572
(
1981
).
21.
Ladyzhenskaya
,
O. A.
and
Uraltzeva
,
N. N.
,
Linear and Quasilinear Elliptic Equations
, 2nd ed. (
Nauka
,
Moscow
,
1973
;
[English transl. of 1st edition,
Academic Press
,
New York
,
1968
]).
22.
Lieberman
,
G. M.
, “
Solvability of quasilinear elliptic equations with nonlinear boundary conditions
,”
Trans. Am. Math. Soc.
273
,
753
(
1982
).
23.
Lieberman
,
G. M.
, “
Hölder continuity of the gradient of solutions of uniformly parabolic equations with conormal boundary conditions
,”
Ann. Mat. Pura Appl.
148
,
77
(
1987
).
24.
Lieberman
,
G. M.
, “
Oblique derivative problems in Lipschitz domains. I, Continous boundary data
,”
Boll. Unione Mat. Ital. B
(
1-B
,
1185
(
1987
).
25.
Lieberman
,
G. M.
and
Pan
,
X. B.
, “
On a quasilinear system arising in the theory of superconductivity
,”
Proc. Royal Soc. Edinburgh, Sect. A: Math.
(to be published).
26.
Lieberman
,
G. M.
and
Trudinger
,
N. S.
, “
Nonlinear oblique boundary value problems for nonlinear elliptic equations
,”
Trans. Am. Math. Soc.
295
,
509
(
1986
).
27.
Lu
,
K. N.
and
Pan
,
X. B.
, “
Estimates of the upper critical field for the Ginzburg-Landau equations of superconductivity
,”
Physica D
127
,
73
(
1999
).
28.
Monneau
,
R.
, “
Quasilinear elliptic system arising in a three-dimensional type II superconductor for infinite κ
,”
Nonlinear Anal.
52
,
917
(
2003
).
29.
Pan
,
X. B.
,“
Surface superconductivity in applied magnetic fields above HC2
,”
Commun. Math. Phys.
228
,
327
(
2002
).
30.
Pan
,
X. B.
, “
On a quasilinear system involving the operator Curl
,”
Calculus Var. Partial Differ. Equ.
36
,
317
(
2009
).
31.
Pan
,
X. B.
, “
Minimizing Curl in a multiconnected domain
,”
J. Math. Phys.
50
(
3
),
033508
(
2009
).
32.
Pan
,
X. B.
, “
On a second order differential operator involving Curl
,” preprint March
2009
.
33.
Pan
,
X. B.
, “
Nucleation of instability of Meissner state of superconductors and related mathematical problems
,” in
Trends in Partial Differential Equations
, edited by
B. J.
Bian
,
S. H.
Li
, and
X. J.
Wang
(
Higher Education Press
,
Beijing
,
2009
), pp.
323
372
.
34.
Pan
,
X. B.
and
Kwek
,
K.
, “
On a problem related to vortex nucleation of superconductivity
,”
J. Differ. Equations
182
,
141
(
2002
).
35.
Picard
,
R.
, “
On the boundary value problems of electro- and magnetostatics
,”
Proc. Royal Soc. Edinburgh, Sect. A: Math.
92
,
165
(
1982
).
36.
Saranen
,
J.
, “
On electric and magnetic problems for vector fields in anisotropic nonhomogeneous media
,”
J. Math. Anal. Appl.
91
,
254
(
1983
).
37.
Schneider
,
T.
and
Singer
,
J. M.
,
Phase Transition Approach to High Temperature Superconductivity – Universal Properties of Cuprate Superconductors
(
Imperial College Press/World Pub. Co.
,
Beijing
,
2004
).
38.
von Wahl
,
W.
, “
Estimating ∇u by div u and curl u
,”
Math. Methods Appl. Sci.
15
,
123
(
1992
).
You do not currently have access to this content.