Existence and uniqueness of advanced and retarded fundamental solutions (Green's functions) and of global solutions to the Cauchy problem is proved for a general class of first order linear differential operators on vector bundles over globally hyperbolic Lorentzian manifolds. This is a core ingredient to CAR-/CCR-algebraic constructions of quantum field theories on curved spacetimes, particularly for higher spin field equations.
REFERENCES
1.
Bär
, C.
, Ginoux
, N.
, and Pfäffle
, F.
, Wave Equations on Lorentzian Manifolds and Quantization
(European Mathematical Society Publishing House
, Zürich
, 2007
).2.
Berline
, N.
, Getzler
, E.
, and Vergne
, M.
, Heat Kernels and Dirac Operators
(Springer
, New York
, 1992
).3.
Bratteli
, O.
and Robinson
, D. W.
, Operator Algebras and Quantum Statistical Mechanics 2
, 2nd ed. (Springer
, New York
, 1996
).4.
Brunetti
, R.
, Fredenhagen
, K.
, and Verch
, R.
, “The generally covariant locality principle—A new paradigm for local quantum field theory
,” Commun. Math. Phys.
237
, 31
(2003
).5.
Buchdahl
, H.
, “On the compatibility of relativistic wave equations in Riemann spaces. II
,” J. Phys. A
15
, 1
(1982
).6.
Dimock
, J.
, “Algebras of local observables on a manifold
,” Commun. Math. Phys
77
, 219
(1980
).7.
Dimock
, J.
, “Dirac quantum fields on a manifold
,” Trans. Am. Math. Soc.
269
, 133
(1982
).8.
Fewster
, C. F.
and Verch
R.
, “A quantum weak energy inequality for dirac fields in curved spacetime
,” Commun. Math. Phys.
225
, 331
(2002
).9.
Illge
, R.
, “Massive fields of arbitrary spin in curved space-times
,” Commun. Math. Phys.
158
, 433
(1993
).10.
Leray
, J.
, “Hyperbolic differential equations
,” (unpublished).11.
Mühlhoff
, R.
, “Higher spin fields on curved spacetimes
,” Universität Leipzig, 2007
, http://lips.informatik.uni-leipzig.de/pub/2007-6.12.
Sanders
, K.
, “The locally covariant dirac field
,” Rev. Math. Phys.
22
, 381
(2010
).13.
Wünsch
, V.
, “Cauchy's problem and Huygens’ principle for relativistic higher spin wave equations in an arbitrary curved space-time
,” Gen. Relativ. Gravit.
17
, 15
(1985
).© 2011 American Institute of Physics.
2011
American Institute of Physics
You do not currently have access to this content.