Existence and uniqueness of advanced and retarded fundamental solutions (Green's functions) and of global solutions to the Cauchy problem is proved for a general class of first order linear differential operators on vector bundles over globally hyperbolic Lorentzian manifolds. This is a core ingredient to CAR-/CCR-algebraic constructions of quantum field theories on curved spacetimes, particularly for higher spin field equations.

1.
Bär
,
C.
,
Ginoux
,
N.
, and
Pfäffle
,
F.
,
Wave Equations on Lorentzian Manifolds and Quantization
(
European Mathematical Society Publishing House
,
Zürich
,
2007
).
2.
Berline
,
N.
,
Getzler
,
E.
, and
Vergne
,
M.
,
Heat Kernels and Dirac Operators
(
Springer
,
New York
,
1992
).
3.
Bratteli
,
O.
and
Robinson
,
D. W.
,
Operator Algebras and Quantum Statistical Mechanics 2
, 2nd ed. (
Springer
,
New York
,
1996
).
4.
Brunetti
,
R.
,
Fredenhagen
,
K.
, and
Verch
,
R.
, “
The generally covariant locality principle—A new paradigm for local quantum field theory
,”
Commun. Math. Phys.
237
,
31
(
2003
).
5.
Buchdahl
,
H.
, “
On the compatibility of relativistic wave equations in Riemann spaces. II
,”
J. Phys. A
15
,
1
(
1982
).
6.
Dimock
,
J.
, “
Algebras of local observables on a manifold
,”
Commun. Math. Phys
77
,
219
(
1980
).
7.
Dimock
,
J.
, “
Dirac quantum fields on a manifold
,”
Trans. Am. Math. Soc.
269
,
133
(
1982
).
8.
Fewster
,
C. F.
and
Verch
R.
, “
A quantum weak energy inequality for dirac fields in curved spacetime
,”
Commun. Math. Phys.
225
,
331
(
2002
).
9.
Illge
,
R.
, “
Massive fields of arbitrary spin in curved space-times
,”
Commun. Math. Phys.
158
,
433
(
1993
).
10.
Leray
,
J.
, “
Hyperbolic differential equations
,” (unpublished).
11.
Mühlhoff
,
R.
, “
Higher spin fields on curved spacetimes
,” Universität Leipzig,
2007
, http://lips.informatik.uni-leipzig.de/pub/2007-6.
12.
Sanders
,
K.
, “
The locally covariant dirac field
,”
Rev. Math. Phys.
22
,
381
(
2010
).
13.
Wünsch
,
V.
, “
Cauchy's problem and Huygens’ principle for relativistic higher spin wave equations in an arbitrary curved space-time
,”
Gen. Relativ. Gravit.
17
,
15
(
1985
).
You do not currently have access to this content.