In the single band tight-binding approximation, we consider the transport properties of an electron subject to a homogeneous static electric field. We show that repeated interactions of the electron with two-level systems in thermal equilibrium suppress the Bloch oscillations and induce a steady current, the statistical properties of which we study.
REFERENCES
1.
Ashcroft
, N. W.
and Mermin
, N. D.
, Solid State Physics
(Holt-Saunders International Editions
, New York
, 1976
).2.
Attal
, S.
and Pautrat
, Y.
, “From repeated to continuous quantum interactions
,” Ann. Henri Poincaré
7
, 59
(2006
).3.
Avron
, J. E.
, Bachmann
, S.
, Graf
, G. M.
, and Klich
, I.
, “Fredholm determinants and the statistics of charge transport
,” Commun. Math. Phys.
280
, 807
(2008
).4.
Bellissard
, J.
, “Coherent and dissipative transport in aperiodic solids
,” in Dynamics of Dissipation, edited by P.
Garbaczewski
and R.
Olkiewicz
, Lect. Notes Phys.
597
, 413
(2003
).5.
Bruneau
, L.
, Joye
, A.
, and Merkli
, M.
, “Asymptotics of repeated interaction quantum systems
,” J. Funct. Anal.
239
, 310
(2006
).6.
Bruneau
, L.
and Pillet
, C.-A.
, “Thermal relaxation of a QED cavity
,” J. Stat. Phys.
134
, 1071
(2009
).7.
Bryc
, W.
, “A remark on the connection between the large deviation principle and the central limit theorem
,” Stat. Prob. Lett.
18
, 253
(1993
).8.
Clark
, J.
, De Roeck
, W.
, and Maes
, C.
, “Diffusive behavior from a quantum master equation
,” arXiv:0812.2858 (2009
).9.
Cohen-Tannoudji
, C.
, Dupont-Roc
, J.
, and Grinberg
, G.
, Atom–Photon Interactions
(Wiley
, New York
, 1992
).10.
De
Roeck
, W.
, “Large deviation generating function for currents in the Pauli-Fierz model
,” Rev. Math. Phys.
21
, 549
(2009
).11.
De Roeck
, W.
and Fröhlich
, J.
, “Diffusion of a massive quantum particle coupled to a quasi-free thermal medium
,” arXiv:0906.5178 (2009
).12.
De Roeck
, W.
, Fröhlich
, J.
, and Pizzo
, A.
, “Quantum Brownian motion in a simple model system
,” Commun. Math. Phys.
293
, 361
(2010
).13.
Dembo
, A.
and Zeitouni
, O.
, Large Deviations Techniques and Applications
(Springer-Verlag
, New York
, 1998
).14.
15.
Fisher
, P. A.
and Zwerger
, W.
, “Quantum Brownian motion in a periodic potential
,” Phys. Rev. B
32
, 6190
(1985
).16.
Jakšić
, V.
, Pillet
, C.-A.
, and Rey-Bellet
, L.
, “Entropic fluctuations in statistical mechanics I. Classical dynamical systems
,” Nonlinearity
24
, 699
(2011
).17.
Olver
, W. J.
, Lozier
, D. W.
, Boisvert
, R. F.
, and Clark
, C. W.
, NIST Handbook of Mathematical Functions
(Cambridge University Press
, Cambridge
, 2010
).18.
Rondoni
, R.
and Mejí a-Monasterio
, C.
, “Fluctuations in nonequilibrium statistical mechanics: Models, mathematical theory, physical mechanisms
,” Nonlinearity
20
, R1
(2007
).19.
Schrader
, R.
: Perron-Frobenius theory for positive maps on trace ideals
. In “Mathematical Physics in Mathematics and Physics. Quantum and Operator Algebraic Aspects,” R.
Longo
ed., p. 361
–378
. Fields Institute Communications (AMS
, Providence, Rhode Island, 2001
).© 2011 American Institute of Physics.
2011
American Institute of Physics
You do not currently have access to this content.