In the single band tight-binding approximation, we consider the transport properties of an electron subject to a homogeneous static electric field. We show that repeated interactions of the electron with two-level systems in thermal equilibrium suppress the Bloch oscillations and induce a steady current, the statistical properties of which we study.

1.
Ashcroft
,
N. W.
and
Mermin
,
N. D.
,
Solid State Physics
(
Holt-Saunders International Editions
,
New York
,
1976
).
2.
Attal
,
S.
and
Pautrat
,
Y.
, “
From repeated to continuous quantum interactions
,”
Ann. Henri Poincaré
7
,
59
(
2006
).
3.
Avron
,
J. E.
,
Bachmann
,
S.
,
Graf
,
G. M.
, and
Klich
,
I.
, “
Fredholm determinants and the statistics of charge transport
,”
Commun. Math. Phys.
280
,
807
(
2008
).
4.
Bellissard
,
J.
, “
Coherent and dissipative transport in aperiodic solids
,” in Dynamics of Dissipation, edited by
P.
Garbaczewski
and
R.
Olkiewicz
,
Lect. Notes Phys.
597
,
413
(
2003
).
5.
Bruneau
,
L.
,
Joye
,
A.
, and
Merkli
,
M.
, “
Asymptotics of repeated interaction quantum systems
,”
J. Funct. Anal.
239
,
310
(
2006
).
6.
Bruneau
,
L.
and
Pillet
,
C.-A.
, “
Thermal relaxation of a QED cavity
,”
J. Stat. Phys.
134
,
1071
(
2009
).
7.
Bryc
,
W.
, “
A remark on the connection between the large deviation principle and the central limit theorem
,”
Stat. Prob. Lett.
18
,
253
(
1993
).
8.
Clark
,
J.
,
De Roeck
,
W.
, and
Maes
,
C.
, “
Diffusive behavior from a quantum master equation
,” arXiv:0812.2858 (
2009
).
9.
Cohen-Tannoudji
,
C.
,
Dupont-Roc
,
J.
, and
Grinberg
,
G.
,
Atom–Photon Interactions
(
Wiley
,
New York
,
1992
).
10.
De
Roeck
,
W.
, “
Large deviation generating function for currents in the Pauli-Fierz model
,”
Rev. Math. Phys.
21
,
549
(
2009
).
11.
De Roeck
,
W.
and
Fröhlich
,
J.
, “
Diffusion of a massive quantum particle coupled to a quasi-free thermal medium
,” arXiv:0906.5178 (
2009
).
12.
De Roeck
,
W.
,
Fröhlich
,
J.
, and
Pizzo
,
A.
, “
Quantum Brownian motion in a simple model system
,”
Commun. Math. Phys.
293
,
361
(
2010
).
13.
Dembo
,
A.
and
Zeitouni
,
O.
,
Large Deviations Techniques and Applications
(
Springer-Verlag
,
New York
,
1998
).
14.
Dutra
,
S. M.
,
Cavity Quantum Electrodynamics
(
Wiley
,
New York
,
2005
).
15.
Fisher
,
P. A.
and
Zwerger
,
W.
, “
Quantum Brownian motion in a periodic potential
,”
Phys. Rev. B
32
,
6190
(
1985
).
16.
Jakšić
,
V.
,
Pillet
,
C.-A.
, and
Rey-Bellet
,
L.
, “
Entropic fluctuations in statistical mechanics I. Classical dynamical systems
,”
Nonlinearity
24
,
699
(
2011
).
17.
Olver
,
W. J.
,
Lozier
,
D. W.
,
Boisvert
,
R. F.
, and
Clark
,
C. W.
,
NIST Handbook of Mathematical Functions
(
Cambridge University Press
,
Cambridge
,
2010
).
18.
Rondoni
,
R.
and
Mejí a-Monasterio
,
C.
, “
Fluctuations in nonequilibrium statistical mechanics: Models, mathematical theory, physical mechanisms
,”
Nonlinearity
20
,
R1
(
2007
).
19.
Schrader
,
R.
:
Perron-Frobenius theory for positive maps on trace ideals
. In “Mathematical Physics in Mathematics and Physics. Quantum and Operator Algebraic Aspects,”
R.
Longo
ed., p.
361
378
. Fields Institute Communications (
AMS
, Providence, Rhode Island,
2001
).
You do not currently have access to this content.