In the investigation of two-body Coulomb Schrödinger equations with some types of nonhomogeneities, the particular solution can be expressed in terms of a two-variable Kampé de Fériet hypergeometric function. The asymptotic limit of the latter—for both variables being large but their ratio being a bound constant—is required in order to extract relevant physical information from the solutions. In this report the mathematical limit is provided. For that purpose, a particular series representation of the hypergeometric function—in terms of products of Kummer and Gauss functions—is first derived.

1.
A. W.
Babister
,
Transcendental Functions Satisfying Nonhomogeneous Linear Differential Equations
(
The Mcmillan Company
,
New York
,
1967
).
2.
R. G.
Newton
,
Scattering Theory of Waves and Particles
(
Dover Publications INC
,
New York
,
2002
).
3.
C. J.
Joachain
,
Quantum Collision Theory
(
Noth-Holland Publishing Company
,
Amsterdam
,
1983
).
4.
G.
Gasaneo
and
L. U.
Ancarani
,
Phys. Rev. A
82
,
042706
(
2010
).
5.
P.
Appell
and
J. Kampé de
Fériet
,
Fonctions Hypergéométriques et Hypersphériques; Polynomes d’Hermite
(
Gauthier-Villars
,
Paris
,
1926
).
6.
L. U.
Ancarani
and
G.
Gasaneo
,
J. Math. Phys.
49
,
063508
(
2008
).
7.
M.
Abramowitz
and
I. A.
Stegun
,
Handbook of Mathematical Functions
(
Dover
,
New York
,
1972
).
8.
A.
Erdelyi
,
W.
Magnus
,
F.
Oberhettinger
, and
F. G.
Tricomi
, in
Higher Trascendental Functions
(
McGraw-Hill
,
New York
,
1953
), Vol.
I–III
.
You do not currently have access to this content.