For a pre-Hilbert space S, let F(S) denote the orthogonally closed subspaces, Eq(S) the quasi-splitting subspaces, E(S) the splitting subspaces, D(S) the Foulis-Randall subspaces, and R(S) the maximal Foulis-Randall subspaces, of S. It was an open problem whether the equalities D(S) = F(S) and E(S) = R(S) hold in general [Cattaneo, G. and Marino, G., “Spectral decomposition of pre-Hilbert spaces as regard to suitable classes of normal closed operators,” Boll. Unione Mat. Ital.6 1-B, 451466 (1982); Cattaneo, G., Franco, G., and Marino, G., “Ordering of families of subspaces of pre-Hilbert spaces and Dacey pre-Hilbert spaces,” Boll. Unione Mat. Ital.71-B, 167183 (1987); Dvurečenskij, A., Gleason's Theorem and Its Applications (Kluwer, Dordrecht, 1992), p. 243.]. We prove that the first equality is true and exhibit a pre-Hilbert space S for which the second equality fails. In addition, we characterize complete pre-Hilbert spaces as follows: S is a Hilbert space if, and only if, S has an orthonormal basis and Eq(S) admits a non-free charge.

1.
Amemiya
,
I.
and
Araki
,
H.
, “
A remark on Piron's paper
,”
Publ. Res. Inst. Math. Sci., Kyoto Univ. Ser. A
2
,
423
427
(
1996
/1967).
2.
Birkhoff
,
G.
and von
Neumann
,
J.
, “
The logic of quantum mechanics
,”
Ann. Math.
37
,
823
843
(
1936
).
3.
Buhagiar
,
D.
and
Chetcuti
,
E.
, “
Quasi-splitting subspaces in a pre-Hilbert space
,”
Math. Nachr.
280
,
479
484
(
2007
).
4.
Buhagiar
,
D.
and
Chetcuti
,
E.
Only “free” measures are admissable on F(S) when S is incomplete
,”
Proc. Am. Math. Soc.
136
,
919
922
(
2008
).
5.
Buhagiar
,
D.
,
Chetcuti
,
E.
, and
Dvurečenskij
,
A.
, “
Algebraic and measure-theoretic properties of classes of subspaces of an inner product space
,” in
Handbook of Quantum Logic and Quantum Structures
, edited by
K.
Engesser
,
Dov M.
Gabbay
, and
D.
Lehmann
(
Elsevier
,
The Netherlands
,
2007
), pp.
75
120
.
6.
Buhagiar
,
D.
,
Chetcuti
,
E.
, and
Weber
,
H.
, “
Orthonormal bases and quasi-splitting subspaces in pre-Hilbert spaces
,”
J. Math. Anal. Appl.
345
,
725
730
(
2008
).
7.
Cattaneo
,
G.
and
Marino
,
G.
, “
Spectral decomposition of pre-Hilbert spaces as regard to suitable classes of normal closed operators
,”
Boll. Unione Mat. Ital.
6
(
1-B
),
451
466
(
1982
).
8.
Cattaneo
,
G.
and
Marino
,
G.
, “
Completeness of inner product spaces with respect to splitting subspaces
,”
Lett. Math. Phys.
11
,
15
20
(
1986
).
9.
Cattaneo
,
G.
,
Franco
,
G.
, and
Marino
,
G.
, “
Ordering of families of subspaces of pre-Hilbert spaces and Dacey pre-Hilbert spaces
,”
Boll. Unione Mat. Ital.
7
1-B
167
183
(
1987
).
10.
Chetcuti
,
E.
and
Dvurečenskij
,
A.
, “
The state-space of the lattice of orthogonally closed subspaces
,”
Glasg. Math. J.
47
,
213
220
(
2005
).
11.
Dvurečenskij
,
A.
, “
Completeness of inner product spaces and quantum logic of splitting subspaces
,”
Lett. Math. Phys.
15
,
231
235
(
1988
).
12.
Dvurečenskij
,
A.
,
Gleason's Theorem and Its Applications
(
Kluwer
,
Dordrecht
,
1992
).
13.
Foulis
,
D. J.
and
Randall
,
C. H.
, “
Operational statistics I: Basic concepts
,”
J. Math. Phys.
13
,
1667
1675
(
1972
).
14.
Fowler
 III,
N.
, “
Elementary counterexamples in infinite dimensional inner product spaces
,”
Math. Mag.
52
,
96
97
(
1979
).
15.
Halmos
,
P. R.
,
A Hilbert Space Problem Book
, 2nd ed. (
Springer-Verlag
,
New York
,
1982
).
16.
Hamhalter
,
J.
,
Quantum Measure Theory
(
Kluwer
,
Dordrecht
,
2003
).
17.
Hamhalter
,
J.
and
Pták
,
P.
, “
A completeness criterion for inner product spaces
,”
Bull. London Math. Soc.
19
,
259
263
(
1987
).
18.
Kalmbach
,
G.
,
Orthomodular Lattices
(
Academic
,
London
,
1983
).
19.
Piron
,
C.
, “
Axiomatique quantique
,”
Helv. Phys. Acta
37
,
439
468
(
1964
).
20.
Pták
,
P.
and
Pulmannová
,
S.
,
Orthomodular Structures as Quantum Logics
(
Kluwer
,
Dordrecht
,
1991
).
21.
Varadarajan
,
V. S.
,
Geometry of Quantum Theory
(
Springer-Verlag
,
New York
,
1985
).
You do not currently have access to this content.