In the Wigner framework, one abandons the assumption that the usual canonical commutation relations are necessarily valid. Instead, the compatibility of Hamilton's equations and the Heisenberg equations is the starting point, and no further assumptions are made about how the position and momentum operators commute. Wigner quantization leads to new classes of solutions, and representations of Lie superalgebras are needed to describe them. For the n-dimensional Wigner harmonic oscillator, solutions are known in terms of the Lie superalgebras osp(1|2n) and gl(1|n). For n = 3N, the question arises as to how the angular momentum decomposition of representations of these Lie superalgebras is computed. We construct generating functions for the angular momentum decomposition of specific series of representations of osp(1|6N) and gl(1|3N), with N = 1 and N = 2. This problem can be completely solved for N = 1. However, for N = 2 only some classes of representations allow executable computations.

1.
E. P.
Wigner
,
Phys. Rev.
77
,
711
712
(
1950
).
2.
T. D.
Palev
,
Czech. J. Phys.
29
,
91
98
(
1979
).
3.
T. D.
Palev
,
J. Math. Phys.
23
,
1778
1784
(
1982
).
4.
A. H.
Kamupingene
,
T. D.
Palev
, and
S. P.
Tsavena
,
J. Math. Phys.
27
,
2067
2075
(
1986
).
5.
S.
Lievens
and
J.
Van der Jeugt
,
J. Phys. A: Math. Theor.
41
,
355204
(
2008
).
6.
A. C.
Ganchev
and
T. D.
Palev
,
J. Math. Phys.
21
,
797
799
(
1980
).
7.
S.
Lievens
,
N. I.
Stoilova
, and
J.
Van der Jeugt
,
Commun. Math. Phys.
281
,
805
826
(
2008
).
8.
I. G.
Macdonald
,
Symmetric Functions and Hall Polynomials
, 2nd ed. (
Oxford University Press
,
Oxford
,
1995
).
9.
D. E.
Littlewood
,
The Theory of Group Characters
(
Oxford University Press
,
Oxford
,
1940
).
10.
R.
Gaskell
,
A.
Peccia
, and
R. T.
Sharp
,
J. Math. Phys.
19
,
727
733
(
1978
).
11.
B. G.
Wybourne
,
Classical Groups for Physicists
(
Wiley
,
New York
,
1978
).
12.
M. D.
Gould
and
R. B.
Zhang
,
J. Math. Phys.
31
,
2552
2559
(
1990
).
13.
A.
Berele
and
A.
Regev
,
Adv. Math.
64
,
118
175
(
1987
).
14.
R. C.
King
and
T. A.
Welsh
, private communication (
2011
).
15.
R. C.
King
,
N. I.
Stoilova
, and
J.
Van der Jeugt
,
J. Phys. A
39
,
5763
5785
(
2006
).
16.
J.
Patera
and
R. T.
Sharp
,
J. Phys. A
13
,
397
416
(
1980
).
17.
J.-G.
Luque
and
J.-Y.
Thybon
,
Phys. Rev. A
67
,
042303
(
2003
).
18.
J.-G.
Luque
and
J.-Y.
Thybon
,
J. Phys. A
39
,
371
377
(
2006
).
19.
A.
Garsia
,
N.
Wallach
,
G.
Xin
, and
M.
Zabrocki
, “
Kronecker coefficients via symmetric functions and constant term identities
,” (preprint
2010
).
20.
A.
Brown
,
S.
van Willigenburg
, and
M.
Zabrocki
,
Pac. J. Math.
248
,
31
48
(
2010
).
You do not currently have access to this content.