In this work, we investigate conditions which ensure the existence of an exponentially localized Wannier basis for a given periodic hamiltonian. We extend previous results [Panati, G., Ann. Henri Poincare8, 995

1011
(2007)] to include periodic zero flux magnetic fields which is the setting also investigated by Kuchment [J. Phys. A: Math. Theor.42, 025203 (2009)]. The new notion of magnetic symmetry plays a crucial rôle; to a large class of symmetries for a non-magnetic system, one can associate “magnetic” symmetries of the related magnetic system. Observing that the existence of an exponentially localized Wannier basis is equivalent to the triviality of the so-called Bloch bundle, a rank m hermitian vector bundle over the Brillouin zone, we prove that magnetic time-reversal symmetry is sufficient to ensure the triviality of the Bloch bundle in spatial dimension d = 1, 2, 3. For d = 4, an exponentially localized Wannier basis exists provided that the trace per unit volume of a suitable function of the Fermi projection vanishes. For d > 4 and d ⩽ 2m (stable rank regime) only the exponential localization of a subset of Wannier functions is shown; this improves part of the analysis of Kuchment [J. Phys. A: Math. Theor.42, 025203 (2009)]. Finally, for d > 4 and d > 2m (unstable rank regime) we show that the mere analysis of Chern classes does not suffice in order to prove triviality and thus exponential localization.

1.
Atiyah
,
M. F.
,
Hitchin
,
N. J.
, and
Singer
,
I. M.
, “
Self-duality in four-dimensional Riemannian Geometry
,”
Proc. Roy. Soc. London Ser. A
,
362
(
1711
),
425
461
(
1978
).
2.
Ashcroft
,
N. W.
and
Mermin
,
N. D.
,
Solid State Physics
(
Saunders College Publishing
,
Philadelphia
,
1976
).
3.
Bellissard
,
J.
,
De Nittis
,
G.
, and
Milani
,
V.
, “
Wannier transform for aperiodic tilings
,” (unpublished).
4.
Bellissard
,
J.
, “
Gap labelling theorems for Schrödinger operators
,” In
From Number Theory to Physics
, edited by
J. M.
Luck
,
P.
Moussa
, and
M.
Waldschmidt
(
Springer-Verlag
,
Berlin
,
1993
), pp.
538
630
.
5.
Brouder
,
C.
,
Panati
,
G.
,
Calandra
,
M.
,
Mourougane
,
C.
, and
Marzari
,
N.
, “
Exponential localization of Wannier functions in insulators
,”
Phys. Rev. Lett.
98
(
4
),
046402
(
2007
).
6.
Berezin
,
F. A.
and
Shubin
,
M. A.
,
The Schrödinger Equation
(
Kluwer Academic Publishers
,
Dordrecht
,
1991
).
7.
Brüning
,
J.
and
Sunada
,
T.
, “
On the spectrum of gauge-periodic elliptic operators
,”
Astérisque
210
,
65
74
(
1992
).
8.
Brüning
,
J.
and
Sunada
,
T.
, “
On the spectrum of periodic elliptic operators
,”
Nagoya Math. J.
126
,
159
171
(
1992
).
9.
Braam
,
P. J.
and
Van Baal
,
P.
, “
Nahm's transformation for instantons
,”
Commun. Math. Phys.
122
(
2
),
267
280
(
1989
).
10.
Chern
,
S. S.
,
Chen
,
W. H.
, and
Lam
,
K. S.
,
Lectures on Differential Geometry
(
World Scientific Publishing Co. Pte. Ltd.
,
Singapore
,
2000
).
11.
Dieck
,
T. T.
,
Algebraic Topology
(
European Mathematical Society
,
Zürich
,
2008
).
12.
De Nittis
,
G.
and
Lein
,
M.
, “
Applications of magnetic ΨDO techniques to SAPT – beyond a simple review
,”
Rev. Math. Phys.
23
,
233
260
(
2011
).
13.
De Nittis
,
G.
and
Lein
,
M.
, “
Magnetic symmetries
,” (unpublished).
14.
Dubrovin
,
B. A.
and
Novikov
,
S. P.
, “
Ground states of a two-dimensional electron in a periodic magnetic field
,”
Sov. Phys. JETP
52
,
511
516
(
1980
).
15.
De Nittis
,
G.
and
Panati
,
G.
Effective models for conductance in magnetic fields: derivation of Harper and Hofstadter models
,” (submitted), arxiv:1007.4786,
2010
.
16.
Ekedahl
,
T.
, “
Complex vector bundles with trivial Chern classes on k-tori
,” MathOverflow (see, http://mathoverflow.net/users/4008),
2010
.
17.
Fell
,
J. M. G.
and
Doran
,
R. S.
,
Representations of *-algebras, Locally Compact Groups and Algebras
(
Elsevier
,
New York
,
1988
).
18.
Grosso
,
G.
and
Pastori Parravicini
,
G.
,
Solid State Physics
(
Academic
,
New York
,
2003
).
19.
Grauert
,
H.
and
Remmert
,
R.
,
Theory of Stein Spaces
(
Springer-Verlag
,
Berlin
,
2004
).
20.
Grauert
,
H.
, “
Analytische Faserungen Über holomorph-vollständigen Räumen
,”
Math. Ann.
135
,
263
273
(
1958
).
21.
Hatcher
,
A.
,
Algebraic Topology
(
Cambridge University Press
,
Cambridge, England
,
2002
).
22.
Hatcher
,
A.
, Vector Bundles & K-Theory,
2009
.
23.
Hempel
,
R.
and
Herbst
,
I.
, “
Bands and gaps for periodic magnetic Hamiltonians
,”
Preprints ESI
162
,
1
11
(
1994
).
24.
Hirsch
,
M. W.
,
Differential Topology
(
Springer-Verlag
,
Berlin
,
1976
).
25.
Helffer
,
B.
and
Sjöstrand
,
J.
,
Equation de Schrödinger avec champ magnétique et equation de Harper
,
Lecture Notes in Physics
Vol.
345
(
Springer-Verlag
,
Berlin
,
1989
), pp.
118
197
.
26.
Husemöller
,
D.
,
Fibre Bundles
(
McGraw-Hill
,
New York
,
1966
).
27.
Hörmander
,
L.
,
An Introduction to Complex Analysis in Several Variables
(
Elsevier
,
New York
,
1990
).
28.
Kato
,
T.
,
Perturbation Theory for Linear Operators
(
Springer-Verlag
,
Berlin
,
1995
).
29.
Kobayashi
,
S.
and
Nomizu
,
K.
,
Foundations of Differential Geometry
(
Wiley
,
New York
,
1996
).
30.
Kohn
,
W.
, “
Analytic properties of Bloch waves and Wannier functions
,”
Phys. Rev.
115
,
809
821
(
1959
).
31.
Kuchment
,
P.
, “
Floquet theory for partial differential equations
,” in
Operator Theory: Advances and Applications
(
Birkhäuser
,
New York
,
1993
).
32.
Kuchment
,
P.
, “
Tight frames of exponentially decaying Wannier functions
,”
J. Phys. A: Math. Theor.
42
,
025203
(
2009
).
33.
Lein
,
M.
, M. S. thesis,
Technische Universitüt München
, Munich, Germany,
2005
.
34.
Lions
,
J. L.
and
Magenes
,
E.
,
Non-Homogeneous Boundary Value Problems and Applications I
(
Springer–Verlag
,
Berlin
,
1972
).
35.
Luke
,
G.
and
Mishchenko
,
A. S.
, “
Vector Bundles and their Applications
,” in
Mathematics and Its Applications
(
Kluwer Academic Publishers
,
Dordrecht
,
1998
).
36.
Măntoiu
,
M.
,
Purice
,
R.
, and
Richard
,
S.
, “
Twisted crossed products and magnetic pseudodifferential operators
,” in
Advances in Operator Algebras and Mathematical Physics
(
Theta
,
Bucharest
,
2005
), pp.
137
172
.
37.
Milnor
,
J.
and
Stasheff
,
J. D.
,
Characteristic Classes
(
Princeton University Press
,
Princeton, NJ
,
1974
).
38.
Marzari
,
N.
,
Souza
,
I.
, and
Vanderbilt
,
D.
, “
An introduction to maximally-localized Wannier functions
,”
Highlight of the Month, Psi-K Newsletter
57
,
129
168
(
2003
).
39.
Marzari
,
N.
and
Vanderbilt
,
D.
, “
Maximally localized generalized Wannier functions for composite energy bands
,”
Phys. Rev. B
56
,
12847
12865
(
1997
).
40.
Nash
,
C.
, “
Gauge potentials and bundles over the 4-torus
,”
Commun. Math. Phys.
88
,
319
325
(
1983
).
41.
Nenciu
,
G.
, “
Existence of the exponentially localised Wannier functions
,”
Commun. Math. Phys.
91
,
81
85
(
1983
).
42.
Nenciu
,
G.
, “
Dynamics of band electrons in electric and magnetic fields: Rigorous justification of the effective Hamiltonians
,”
Rev. Mod. Phys.
63
(
1
),
91
127
(
1991
).
43.
Novikov
,
S. P.
, “
Magnetic Bloch functions and vector bundles. Typical dispersion laws and their quantum numbers
,”
Sov. Math. Dokl.
23
,
298
303
(
1981
).
44.
Panati
,
G.
, “
Triviality of Bloch and BlochâDirac bundles
,”
Ann. Henri Poincare
8
,
995
1011
(
2007
).
45.
Peterson
,
F. P.
, “
Some remarks on Chern classes
,”
Ann. Math.
69
(
2
),
414
420
(
1959
).
46.
Prodan
,
E.
, “
Disordered topological insulators: a non-commutative geometry perspective
,”
J. Phys. A: Math. Theor.
44
,
113001
(
2011
).
47.
Panati
,
G.
,
Spohn
,
H.
, and
Teufel
,
S.
, “
Effective dynamics for Bloch electrons: Peierls substitution
,”
Commun. Math. Phys.
242
,
547
578
(
2003
).
48.
Panati
,
G.
,
Sparber
,
C.
, and
Teufel
,
S.
, “
Geometric currents in Piezoelectricity
,”
Arch. Ration. Mech. Anal.
191
,
387
422
(
2009
).
49.
Reed
,
M.
and
Simon
,
B.
,
Methods of Mathematical Physics I: Functional Analysis
(
Academic
,
New York
,
1972
).
50.
Reed
,
M.
and
Simon
,
B.
,
Methods of Mathematical Physics IV: Analysis of Operators
, (
Academic
,
New York
,
1978
).
51.
Schenk
,
H.
, “
On a generalised fourier transform of instantons over flat tori
,”
Commun. Math. Phys.
116
(
2
),
177
183
(
1988
).
52.
Simon
,
B.
, “
Holonomy, the quantum adiabatic theorem, and Berry's phase
,”
Phys. Rev. Lett.
51
,
2167
2170
(
1983
).
53.
Suslina
,
T.
, “
Absolute continuity of the spectrum of periodic operators of mathematical physics
,”
Journées Équations aux dérivées partielles
(
XVIII
),
1
13
(
2000
).
54.
Thouless
,
D. J.
, “
Wannier functions for magnetic sub-bands
,”
J. Phys. C
17
,
L325
L327
(
1984
).
55.
Wannier
,
G. H.
, “
The structure of electronic excitation levels in insulating crystals
,”
Phys. Rev.
52
,
191
197
(
1937
).
56.
Wannier Developers' Group, wannier.org,
2011
.
57.
Wilcox
,
C.
, “
Theory of Bloch waves
,”
J. Anal. Math.
33
(
1
),
146
167
(
1978
).
58.
Zak
,
J.
, “
Magnetic translation group
,”
Phys. Rev.
134
(
6A
),
A1602
A1606
(
1964
).
You do not currently have access to this content.